Ask questions, share knowledge, and connect with a vibrant community on IDNLearn.com. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.

Read each scenario and then answer the question.

Scenario A: A [tex]$3 \frac{N}{m}$[/tex] spring is compressed a distance of 1.0 m.

Scenario B: A [tex]$6 \frac{N}{m}$[/tex] spring is compressed a distance of 0.8 m.

Scenario C: A [tex]$9 \frac{N}{m}$[/tex] spring is compressed a distance of 0.6 m.

Scenario D: A [tex]$12 \frac{N}{m}$[/tex] spring is compressed a distance of 0.4 m.

Which scenario generates the most elastic potential energy?


Sagot :

Let's analyze each scenario step-by-step to determine the elastic potential energy stored in the springs and identify which scenario generates the most energy. The formula for elastic potential energy [tex]\( U \)[/tex] stored in a spring is given by:

[tex]\[ U = \frac{1}{2} k x^2 \][/tex]

where:
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( x \)[/tex] is the compression distance.

### Scenario A

- Spring constant, [tex]\( k_A = 3 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_A = 1.0 \, m \)[/tex]

Elastic potential energy:

[tex]\[ U_A = \frac{1}{2} \times 3 \, \frac{N}{m} \times (1.0 \, m)^2 = 1.5 \, J \][/tex]

### Scenario B

- Spring constant, [tex]\( k_B = 6 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_B = 0.8 \, m \)[/tex]

Elastic potential energy:

[tex]\[ U_B = \frac{1}{2} \times 6 \, \frac{N}{m} \times (0.8 \, m)^2 = 1.92 \, J \][/tex]

### Scenario C

- Spring constant, [tex]\( k_C = 9 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_C = 0.6 \, m \)[/tex]

Elastic potential energy:

[tex]\[ U_C = \frac{1}{2} \times 9 \, \frac{N}{m} \times (0.6 \, m)^2 = 1.62 \, J \][/tex]

### Scenario D

- Spring constant, [tex]\( k_D = 12 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_D = 0.4 \, m \)[/tex]

Elastic potential energy:

[tex]\[ U_D = \frac{1}{2} \times 12 \, \frac{N}{m} \times (0.4 \, m)^2 = 0.96 \, J \][/tex]

### Summary of Elastic Potential Energies

- [tex]\( U_A = 1.5 \, J \)[/tex]
- [tex]\( U_B = 1.92 \, J \)[/tex]
- [tex]\( U_C = 1.62 \, J \)[/tex]
- [tex]\( U_D = 0.96 \, J \)[/tex]

### Conclusion

The maximum elastic potential energy is [tex]\( 1.92 \, J \)[/tex]. Therefore, Scenario B (A [tex]\(6 \, \frac{N}{m}\)[/tex] spring compressed [tex]\(0.8 \, m\)[/tex]) generates the most elastic potential energy.