Ask questions, share knowledge, and connect with a vibrant community on IDNLearn.com. Receive prompt and accurate responses to your questions from our community of knowledgeable professionals ready to assist you at any time.
Sagot :
Let's analyze each scenario step-by-step to determine the elastic potential energy stored in the springs and identify which scenario generates the most energy. The formula for elastic potential energy [tex]\( U \)[/tex] stored in a spring is given by:
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( x \)[/tex] is the compression distance.
### Scenario A
- Spring constant, [tex]\( k_A = 3 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_A = 1.0 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_A = \frac{1}{2} \times 3 \, \frac{N}{m} \times (1.0 \, m)^2 = 1.5 \, J \][/tex]
### Scenario B
- Spring constant, [tex]\( k_B = 6 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_B = 0.8 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_B = \frac{1}{2} \times 6 \, \frac{N}{m} \times (0.8 \, m)^2 = 1.92 \, J \][/tex]
### Scenario C
- Spring constant, [tex]\( k_C = 9 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_C = 0.6 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_C = \frac{1}{2} \times 9 \, \frac{N}{m} \times (0.6 \, m)^2 = 1.62 \, J \][/tex]
### Scenario D
- Spring constant, [tex]\( k_D = 12 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_D = 0.4 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_D = \frac{1}{2} \times 12 \, \frac{N}{m} \times (0.4 \, m)^2 = 0.96 \, J \][/tex]
### Summary of Elastic Potential Energies
- [tex]\( U_A = 1.5 \, J \)[/tex]
- [tex]\( U_B = 1.92 \, J \)[/tex]
- [tex]\( U_C = 1.62 \, J \)[/tex]
- [tex]\( U_D = 0.96 \, J \)[/tex]
### Conclusion
The maximum elastic potential energy is [tex]\( 1.92 \, J \)[/tex]. Therefore, Scenario B (A [tex]\(6 \, \frac{N}{m}\)[/tex] spring compressed [tex]\(0.8 \, m\)[/tex]) generates the most elastic potential energy.
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant,
- [tex]\( x \)[/tex] is the compression distance.
### Scenario A
- Spring constant, [tex]\( k_A = 3 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_A = 1.0 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_A = \frac{1}{2} \times 3 \, \frac{N}{m} \times (1.0 \, m)^2 = 1.5 \, J \][/tex]
### Scenario B
- Spring constant, [tex]\( k_B = 6 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_B = 0.8 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_B = \frac{1}{2} \times 6 \, \frac{N}{m} \times (0.8 \, m)^2 = 1.92 \, J \][/tex]
### Scenario C
- Spring constant, [tex]\( k_C = 9 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_C = 0.6 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_C = \frac{1}{2} \times 9 \, \frac{N}{m} \times (0.6 \, m)^2 = 1.62 \, J \][/tex]
### Scenario D
- Spring constant, [tex]\( k_D = 12 \, \frac{N}{m} \)[/tex]
- Compression distance, [tex]\( x_D = 0.4 \, m \)[/tex]
Elastic potential energy:
[tex]\[ U_D = \frac{1}{2} \times 12 \, \frac{N}{m} \times (0.4 \, m)^2 = 0.96 \, J \][/tex]
### Summary of Elastic Potential Energies
- [tex]\( U_A = 1.5 \, J \)[/tex]
- [tex]\( U_B = 1.92 \, J \)[/tex]
- [tex]\( U_C = 1.62 \, J \)[/tex]
- [tex]\( U_D = 0.96 \, J \)[/tex]
### Conclusion
The maximum elastic potential energy is [tex]\( 1.92 \, J \)[/tex]. Therefore, Scenario B (A [tex]\(6 \, \frac{N}{m}\)[/tex] spring compressed [tex]\(0.8 \, m\)[/tex]) generates the most elastic potential energy.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.