IDNLearn.com provides a reliable platform for finding accurate and timely answers. Discover in-depth answers from knowledgeable professionals, providing you with the information you need.
Sagot :
To determine the mass of the Sun using Kepler's third law and the given data about Earth's orbit, follow these detailed steps:
### Given Information:
1. Average distance between Earth and the Sun ([tex]\(r\)[/tex]): [tex]\(1.496 \times 10^{11}\)[/tex] meters.
2. Earth's orbital period around the Sun ([tex]\(T\)[/tex]): 365.26 days.
### Convert Orbital Period into Seconds:
First, you need to convert the orbital period from days to seconds because the gravitational constant ([tex]\(G\)[/tex]) is in SI units (meters, kilograms, seconds).
1. There are 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute.
2. Thus, there are 24 60 60 = 86400 seconds in a day.
3. Now convert days to seconds:
[tex]\[ T = 365.26 \times 86400 = 31,558,464 \text{ seconds} \][/tex]
### Kepler's Third Law:
Kepler's third law is given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
Where:
- [tex]\(T\)[/tex] is the orbital period,
- [tex]\(r\)[/tex] is the average distance between Earth and the Sun,
- [tex]\(G\)[/tex] is the gravitational constant ([tex]\(G = 6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-1}\)[/tex]),
- [tex]\(M\)[/tex] is the mass of the Sun.
### Rearrange the Formula to Solve for [tex]\(M\)[/tex]:
[tex]\[ M = \frac{4 \pi^2 r^3}{G T^2} \][/tex]
### Substitute the Known Values into the Formula:
[tex]\[ M = \frac{4 \pi^2 \left(1.496 \times 10^{11} \, m\right)^3}{6.67430 \times 10^{-11} \, \left(31,558,464 \, s\right)^2} \][/tex]
### Calculate the Numerical Values:
1. [tex]\(\pi\)[/tex] is approximately 3.141592653589793.
2. Calculate [tex]\( \left(1.496 \times 10^{11} \, m\right)^3 \)[/tex]:
[tex]\[ \left(1.496 \times 10^{11}\right)^3 = 3.35281216 \times 10^{33} \, m^3 \][/tex]
3. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ \left(31,558,464 \, s\right)^2 = 9.9623133 \times 10^{15} \, s^2 \][/tex]
Now substitute these into the formula:
[tex]\[ M = \frac{4 \times (3.141592653589793)^2 \times 3.35281216 \times 10^{33}}{6.67430 \times 10^{-11} \times 9.9623133 \times 10^{15}} \][/tex]
### Perform the Final Calculation:
[tex]\[ M \approx \frac{1.3271244 \times 10^{34}}{6.6627598 \times 10^{5}} \approx 1.9884610073711198 \times 10^{30} \, kg \][/tex]
### Match with Given Options:
Comparing the calculated mass to the given options:
[tex]\[ 1.99 \times 10^{30} \quad kg \][/tex]
Therefore, the mass of the Sun is approximately [tex]\(1.99 \times 10^{30} \, kg\)[/tex].
### Given Information:
1. Average distance between Earth and the Sun ([tex]\(r\)[/tex]): [tex]\(1.496 \times 10^{11}\)[/tex] meters.
2. Earth's orbital period around the Sun ([tex]\(T\)[/tex]): 365.26 days.
### Convert Orbital Period into Seconds:
First, you need to convert the orbital period from days to seconds because the gravitational constant ([tex]\(G\)[/tex]) is in SI units (meters, kilograms, seconds).
1. There are 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute.
2. Thus, there are 24 60 60 = 86400 seconds in a day.
3. Now convert days to seconds:
[tex]\[ T = 365.26 \times 86400 = 31,558,464 \text{ seconds} \][/tex]
### Kepler's Third Law:
Kepler's third law is given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
Where:
- [tex]\(T\)[/tex] is the orbital period,
- [tex]\(r\)[/tex] is the average distance between Earth and the Sun,
- [tex]\(G\)[/tex] is the gravitational constant ([tex]\(G = 6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-1}\)[/tex]),
- [tex]\(M\)[/tex] is the mass of the Sun.
### Rearrange the Formula to Solve for [tex]\(M\)[/tex]:
[tex]\[ M = \frac{4 \pi^2 r^3}{G T^2} \][/tex]
### Substitute the Known Values into the Formula:
[tex]\[ M = \frac{4 \pi^2 \left(1.496 \times 10^{11} \, m\right)^3}{6.67430 \times 10^{-11} \, \left(31,558,464 \, s\right)^2} \][/tex]
### Calculate the Numerical Values:
1. [tex]\(\pi\)[/tex] is approximately 3.141592653589793.
2. Calculate [tex]\( \left(1.496 \times 10^{11} \, m\right)^3 \)[/tex]:
[tex]\[ \left(1.496 \times 10^{11}\right)^3 = 3.35281216 \times 10^{33} \, m^3 \][/tex]
3. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ \left(31,558,464 \, s\right)^2 = 9.9623133 \times 10^{15} \, s^2 \][/tex]
Now substitute these into the formula:
[tex]\[ M = \frac{4 \times (3.141592653589793)^2 \times 3.35281216 \times 10^{33}}{6.67430 \times 10^{-11} \times 9.9623133 \times 10^{15}} \][/tex]
### Perform the Final Calculation:
[tex]\[ M \approx \frac{1.3271244 \times 10^{34}}{6.6627598 \times 10^{5}} \approx 1.9884610073711198 \times 10^{30} \, kg \][/tex]
### Match with Given Options:
Comparing the calculated mass to the given options:
[tex]\[ 1.99 \times 10^{30} \quad kg \][/tex]
Therefore, the mass of the Sun is approximately [tex]\(1.99 \times 10^{30} \, kg\)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.