Connect with a community of experts and enthusiasts on IDNLearn.com. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.
Sagot :
To calculate [tex]\( i^i \)[/tex], where [tex]\( i \)[/tex] is the imaginary unit and defined as [tex]\( \sqrt{-1} \)[/tex], we can use the properties of complex numbers and Euler's formula. Here is a step-by-step solution:
1. Expressing [tex]\( i \)[/tex] in exponential form:
The imaginary unit [tex]\( i \)[/tex] can be represented in exponential form using Euler's formula [tex]\( e^{i\theta} \)[/tex], which states that [tex]\( e^{i\theta} = \cos(\theta) + i\sin(\theta) \)[/tex]. For [tex]\( i \)[/tex], we have:
[tex]\[ i = e^{i\frac{\pi}{2}} \][/tex]
This works because [tex]\( \cos\left(\frac{\pi}{2}\right) = 0 \)[/tex] and [tex]\( \sin\left(\frac{\pi}{2}\right) = 1 \)[/tex], hence:
[tex]\[ e^{i\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = 0 + i = i \][/tex]
2. Raising [tex]\( i \)[/tex] to the power of [tex]\( i \)[/tex]:
Now we need to find [tex]\( i^i \)[/tex]. Using our exponential form of [tex]\( i \)[/tex], this becomes:
[tex]\[ i^i = \left(e^{i\frac{\pi}{2}}\right)^i \][/tex]
Using the property of exponents [tex]\( (a^b)^c = a^{bc} \)[/tex], we get:
[tex]\[ i^i = e^{i \cdot i\frac{\pi}{2}} = e^{-\frac{\pi}{2}} \][/tex]
Here, the exponent simplifies because [tex]\( i \cdot i = -1 \)[/tex].
3. Simplifying and interpreting the result:
So, [tex]\( i^i \)[/tex] simplifies to:
[tex]\[ i^i = e^{-\frac{\pi}{2}} \][/tex]
Evaluating [tex]\( e^{-\frac{\pi}{2}} \)[/tex] numerically:
[tex]\[ e^{-\frac{\pi}{2}} \approx 0.20787957635076193 \][/tex]
The result is a real number since the imaginary part of [tex]\( e^{-\frac{\pi}{2}} \)[/tex] is 0.
Thus, the value of [tex]\( i^i \)[/tex] is approximately [tex]\( 0.20787957635076193 \)[/tex], and there is no imaginary part. Therefore, the solution can be expressed as:
[tex]\[ i^i \approx 0.20787957635076193 + 0i \][/tex]
1. Expressing [tex]\( i \)[/tex] in exponential form:
The imaginary unit [tex]\( i \)[/tex] can be represented in exponential form using Euler's formula [tex]\( e^{i\theta} \)[/tex], which states that [tex]\( e^{i\theta} = \cos(\theta) + i\sin(\theta) \)[/tex]. For [tex]\( i \)[/tex], we have:
[tex]\[ i = e^{i\frac{\pi}{2}} \][/tex]
This works because [tex]\( \cos\left(\frac{\pi}{2}\right) = 0 \)[/tex] and [tex]\( \sin\left(\frac{\pi}{2}\right) = 1 \)[/tex], hence:
[tex]\[ e^{i\frac{\pi}{2}} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = 0 + i = i \][/tex]
2. Raising [tex]\( i \)[/tex] to the power of [tex]\( i \)[/tex]:
Now we need to find [tex]\( i^i \)[/tex]. Using our exponential form of [tex]\( i \)[/tex], this becomes:
[tex]\[ i^i = \left(e^{i\frac{\pi}{2}}\right)^i \][/tex]
Using the property of exponents [tex]\( (a^b)^c = a^{bc} \)[/tex], we get:
[tex]\[ i^i = e^{i \cdot i\frac{\pi}{2}} = e^{-\frac{\pi}{2}} \][/tex]
Here, the exponent simplifies because [tex]\( i \cdot i = -1 \)[/tex].
3. Simplifying and interpreting the result:
So, [tex]\( i^i \)[/tex] simplifies to:
[tex]\[ i^i = e^{-\frac{\pi}{2}} \][/tex]
Evaluating [tex]\( e^{-\frac{\pi}{2}} \)[/tex] numerically:
[tex]\[ e^{-\frac{\pi}{2}} \approx 0.20787957635076193 \][/tex]
The result is a real number since the imaginary part of [tex]\( e^{-\frac{\pi}{2}} \)[/tex] is 0.
Thus, the value of [tex]\( i^i \)[/tex] is approximately [tex]\( 0.20787957635076193 \)[/tex], and there is no imaginary part. Therefore, the solution can be expressed as:
[tex]\[ i^i \approx 0.20787957635076193 + 0i \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.