IDNLearn.com provides a seamless experience for finding accurate answers. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
Let's go through the given piecewise function [tex]\( f(x) \)[/tex] and solve each part step-by-step:
The function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = \begin{cases} 3^{x-1} - 4 & \text{for } x \leq 3 \\ \frac{15}{x} & \text{for } x > 3 \end{cases} \][/tex]
### Part A: Range of [tex]\( f(x) \)[/tex]
To find the range of [tex]\( f(x) \)[/tex], we need to analyze both parts of the piecewise function separately:
1. For [tex]\( x \leq 3 \)[/tex]:
The function is [tex]\( f(x) = 3^{x-1} - 4 \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( 3^{x-1} \)[/tex] approaches [tex]\( 0 \)[/tex] from above since [tex]\( 3^{-\infty} = 0 \)[/tex].
- Therefore, [tex]\( 3^{x-1} - 4 \)[/tex] will approach [tex]\( -4 \)[/tex] from above.
- When [tex]\( x = 3 \)[/tex], [tex]\( f(3) = 3^{3-1} - 4 = 3^2 - 4 = 9 - 4 = 5 \)[/tex].
- As [tex]\( x \)[/tex] increases towards [tex]\( 3 \)[/tex], [tex]\( 3^{x-1} - 4 \)[/tex] increases exponentially.
Hence, the output of [tex]\( f(x) \)[/tex] for [tex]\( x \leq 3 \)[/tex] can vary from [tex]\( -\infty \)[/tex] (as [tex]\( x \to -\infty \)[/tex]) to [tex]\( 5 \)[/tex] (at [tex]\( x = 3 \)[/tex]).
2. For [tex]\( x > 3 \)[/tex]:
The function is [tex]\( f(x) = \frac{15}{x} \)[/tex].
- As [tex]\( x \to \infty \)[/tex], [tex]\( \frac{15}{x} \)[/tex] approaches [tex]\( 0 \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( 3 \)[/tex] from the right, [tex]\( \frac{15}{x} \)[/tex] approaches [tex]\( \frac{15}{3} = 5 \)[/tex].
Therefore, the output of [tex]\( f(x) \)[/tex] for [tex]\( x > 3 \)[/tex] can vary from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex].
Combining both sections of the piecewise function, we can see that the function [tex]\( f(x) \)[/tex] takes any value from [tex]\( -\infty \)[/tex] to [tex]\( 5 \)[/tex] (inclusive of [tex]\( 0 \)[/tex] but approaching [tex]\( 0 \)[/tex] as [tex]\( x\to\infty\)[/tex]).
Hence, the range of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, \infty) \][/tex]
### Part B: Asymptotes of [tex]\( f(x) \)[/tex]
1. Vertical Asymptote:
- For [tex]\( x \leq 3 \)[/tex], the expression [tex]\( 3^{x-1} - 4 \)[/tex] does not have any vertical asymptotes.
- For [tex]\( x > 3 \)[/tex], the expression [tex]\( \frac{15}{x} \)[/tex] would have a vertical asymptote at [tex]\( x = 0 \)[/tex]; however [tex]\( x = 0 \)[/tex] is outside the domain of this part of the function ([tex]\( x > 3 \)[/tex]). Therefore, within the given domain, there are no vertical asymptotes.
2. Horizontal Asymptote:
- For [tex]\( x \leq 3 \)[/tex], as [tex]\( x \to -\infty \)[/tex], [tex]\( 3^{x-1} - 4 \to -4 \)[/tex].
- For [tex]\( x > 3 \)[/tex], as [tex]\( x \to \infty \)[/tex], [tex]\( \frac{15}{x} \to 0 \)[/tex].
Hence, the horizontal asymptote is [tex]\( y = 0 \)[/tex] as [tex]\( x \to \infty \)[/tex].
Hence, there is no vertical asymptote and there is a horizontal asymptote at:
[tex]\[ y = 0 \][/tex]
### Part C: End Behavior of [tex]\( f(x) \)[/tex]
The end behavior of the function describes how [tex]\( f(x) \)[/tex] behaves as [tex]\( x \)[/tex] approaches [tex]\( \pm \infty \)[/tex].
1. As [tex]\( x \to -\infty \)[/tex] (for [tex]\( x \leq 3 \)[/tex]):
- As [tex]\( x \to -\infty \)[/tex], [tex]\( 3^{x-1} \to 0 \)[/tex] and hence [tex]\( 3^{x-1} - 4 \to -4 \)[/tex].
Therefore, as [tex]\( x \to -\infty \)[/tex]:
[tex]\[ f(x) \to -4 \][/tex]
2. As [tex]\( x \to \infty \)[/tex] (for [tex]\( x > 3 \)[/tex]):
- As [tex]\( x \to \infty \)[/tex], [tex]\( \frac{15}{x} \to 0 \)[/tex].
Therefore, as [tex]\( x \to \infty \)[/tex]:
[tex]\[ f(x) \to 0 \][/tex]
Summarizing the end behavior:
- As [tex]\( x \to -\infty \)[/tex]: [tex]\( f(x) \to -\infty \)[/tex]
- As [tex]\( x \to \infty \)[/tex]: [tex]\( f(x) \to 0 \)[/tex]
### Final Solution Recap:
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Vertical Asymptote: None
- Horizontal Asymptote: [tex]\( y = 0 \)[/tex]
- End Behavior:
- As [tex]\( x \to -\infty \)[/tex]: [tex]\( f(x) \to -\infty \)[/tex]
- As [tex]\( x \to \infty \)[/tex]: [tex]\( f(x) \to 0 \)[/tex]
The function [tex]\( f(x) \)[/tex] is defined as:
[tex]\[ f(x) = \begin{cases} 3^{x-1} - 4 & \text{for } x \leq 3 \\ \frac{15}{x} & \text{for } x > 3 \end{cases} \][/tex]
### Part A: Range of [tex]\( f(x) \)[/tex]
To find the range of [tex]\( f(x) \)[/tex], we need to analyze both parts of the piecewise function separately:
1. For [tex]\( x \leq 3 \)[/tex]:
The function is [tex]\( f(x) = 3^{x-1} - 4 \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( 3^{x-1} \)[/tex] approaches [tex]\( 0 \)[/tex] from above since [tex]\( 3^{-\infty} = 0 \)[/tex].
- Therefore, [tex]\( 3^{x-1} - 4 \)[/tex] will approach [tex]\( -4 \)[/tex] from above.
- When [tex]\( x = 3 \)[/tex], [tex]\( f(3) = 3^{3-1} - 4 = 3^2 - 4 = 9 - 4 = 5 \)[/tex].
- As [tex]\( x \)[/tex] increases towards [tex]\( 3 \)[/tex], [tex]\( 3^{x-1} - 4 \)[/tex] increases exponentially.
Hence, the output of [tex]\( f(x) \)[/tex] for [tex]\( x \leq 3 \)[/tex] can vary from [tex]\( -\infty \)[/tex] (as [tex]\( x \to -\infty \)[/tex]) to [tex]\( 5 \)[/tex] (at [tex]\( x = 3 \)[/tex]).
2. For [tex]\( x > 3 \)[/tex]:
The function is [tex]\( f(x) = \frac{15}{x} \)[/tex].
- As [tex]\( x \to \infty \)[/tex], [tex]\( \frac{15}{x} \)[/tex] approaches [tex]\( 0 \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( 3 \)[/tex] from the right, [tex]\( \frac{15}{x} \)[/tex] approaches [tex]\( \frac{15}{3} = 5 \)[/tex].
Therefore, the output of [tex]\( f(x) \)[/tex] for [tex]\( x > 3 \)[/tex] can vary from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex].
Combining both sections of the piecewise function, we can see that the function [tex]\( f(x) \)[/tex] takes any value from [tex]\( -\infty \)[/tex] to [tex]\( 5 \)[/tex] (inclusive of [tex]\( 0 \)[/tex] but approaching [tex]\( 0 \)[/tex] as [tex]\( x\to\infty\)[/tex]).
Hence, the range of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, \infty) \][/tex]
### Part B: Asymptotes of [tex]\( f(x) \)[/tex]
1. Vertical Asymptote:
- For [tex]\( x \leq 3 \)[/tex], the expression [tex]\( 3^{x-1} - 4 \)[/tex] does not have any vertical asymptotes.
- For [tex]\( x > 3 \)[/tex], the expression [tex]\( \frac{15}{x} \)[/tex] would have a vertical asymptote at [tex]\( x = 0 \)[/tex]; however [tex]\( x = 0 \)[/tex] is outside the domain of this part of the function ([tex]\( x > 3 \)[/tex]). Therefore, within the given domain, there are no vertical asymptotes.
2. Horizontal Asymptote:
- For [tex]\( x \leq 3 \)[/tex], as [tex]\( x \to -\infty \)[/tex], [tex]\( 3^{x-1} - 4 \to -4 \)[/tex].
- For [tex]\( x > 3 \)[/tex], as [tex]\( x \to \infty \)[/tex], [tex]\( \frac{15}{x} \to 0 \)[/tex].
Hence, the horizontal asymptote is [tex]\( y = 0 \)[/tex] as [tex]\( x \to \infty \)[/tex].
Hence, there is no vertical asymptote and there is a horizontal asymptote at:
[tex]\[ y = 0 \][/tex]
### Part C: End Behavior of [tex]\( f(x) \)[/tex]
The end behavior of the function describes how [tex]\( f(x) \)[/tex] behaves as [tex]\( x \)[/tex] approaches [tex]\( \pm \infty \)[/tex].
1. As [tex]\( x \to -\infty \)[/tex] (for [tex]\( x \leq 3 \)[/tex]):
- As [tex]\( x \to -\infty \)[/tex], [tex]\( 3^{x-1} \to 0 \)[/tex] and hence [tex]\( 3^{x-1} - 4 \to -4 \)[/tex].
Therefore, as [tex]\( x \to -\infty \)[/tex]:
[tex]\[ f(x) \to -4 \][/tex]
2. As [tex]\( x \to \infty \)[/tex] (for [tex]\( x > 3 \)[/tex]):
- As [tex]\( x \to \infty \)[/tex], [tex]\( \frac{15}{x} \to 0 \)[/tex].
Therefore, as [tex]\( x \to \infty \)[/tex]:
[tex]\[ f(x) \to 0 \][/tex]
Summarizing the end behavior:
- As [tex]\( x \to -\infty \)[/tex]: [tex]\( f(x) \to -\infty \)[/tex]
- As [tex]\( x \to \infty \)[/tex]: [tex]\( f(x) \to 0 \)[/tex]
### Final Solution Recap:
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
- Vertical Asymptote: None
- Horizontal Asymptote: [tex]\( y = 0 \)[/tex]
- End Behavior:
- As [tex]\( x \to -\infty \)[/tex]: [tex]\( f(x) \to -\infty \)[/tex]
- As [tex]\( x \to \infty \)[/tex]: [tex]\( f(x) \to 0 \)[/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.