For all your questions, big or small, IDNLearn.com has the answers you need. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To solve the given quadratic polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex], we will:
1. Determine the number of roots using the fundamental theorem of algebra.
2. Find the roots using the quadratic formula.
### (a) Number of roots
According to the fundamental theorem of algebra, a polynomial of degree [tex]\( n \)[/tex] has exactly [tex]\( n \)[/tex] roots, accounting for multiplicities and including complex roots.
For the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex], which is a quadratic (degree 2), we can state that it has exactly 2 roots.
### (b) Finding the roots
To find the roots of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Given the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex]:
[tex]\[ a = 2, \quad b = 4, \quad c = 7 \][/tex]
#### Step 1: Calculate the discriminant
The discriminant [tex]\(\Delta\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = 4^2 - 4(2)(7) = 16 - 56 = -40 \][/tex]
Since the discriminant is negative ([tex]\(\Delta = -40\)[/tex]), the roots are complex.
#### Step 2: Calculate the real and imaginary parts of the roots
The quadratic formula for complex roots is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Since [tex]\(\Delta\)[/tex] is negative, we rewrite [tex]\(\sqrt{\Delta}\)[/tex] as [tex]\(\sqrt{-40} = i\sqrt{40}\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
[tex]\[ x = \frac{-4 \pm i\sqrt{40}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-4 \pm i\sqrt{40}}{4} \][/tex]
[tex]\[ x = \frac{-4}{4} \pm \frac{i\sqrt{40}}{4} \][/tex]
[tex]\[ x = -1 \pm \frac{i\sqrt{40}}{4} \][/tex]
Simplifying further, we use [tex]\(\sqrt{40} = 2\sqrt{10}\)[/tex]:
[tex]\[ x = -1 \pm \frac{2i\sqrt{10}}{4} \][/tex]
[tex]\[ x = -1 \pm \frac{i\sqrt{10}}{2} \][/tex]
Thus, the roots are:
[tex]\[ x_1 = -1 + \frac{i\sqrt{10}}{2}, \quad x_2 = -1 - \frac{i\sqrt{10}}{2} \][/tex]
Given these simplifications, we observe that the imaginary parts are:
[tex]\[ \frac{\sqrt{10}}{2} \approx 1.5811388300841898 \][/tex]
Thus, the roots can be written as:
[tex]\[ x_1 = -1 + 1.5811388300841898i, \quad x_2 = -1 - 1.5811388300841898i \][/tex]
### Final Answer:
1. (a) The polynomial [tex]\(2x^2 + 4x + 7\)[/tex] has 2 roots.
2. (b) The roots of the polynomial [tex]\(2x^2 + 4x + 7\)[/tex] are:
[tex]\[ x_1 = -1 + 1.5811388300841898i, \quad x_2 = -1 - 1.5811388300841898i \][/tex]
1. Determine the number of roots using the fundamental theorem of algebra.
2. Find the roots using the quadratic formula.
### (a) Number of roots
According to the fundamental theorem of algebra, a polynomial of degree [tex]\( n \)[/tex] has exactly [tex]\( n \)[/tex] roots, accounting for multiplicities and including complex roots.
For the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex], which is a quadratic (degree 2), we can state that it has exactly 2 roots.
### (b) Finding the roots
To find the roots of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Given the polynomial [tex]\( 2x^2 + 4x + 7 \)[/tex]:
[tex]\[ a = 2, \quad b = 4, \quad c = 7 \][/tex]
#### Step 1: Calculate the discriminant
The discriminant [tex]\(\Delta\)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = 4^2 - 4(2)(7) = 16 - 56 = -40 \][/tex]
Since the discriminant is negative ([tex]\(\Delta = -40\)[/tex]), the roots are complex.
#### Step 2: Calculate the real and imaginary parts of the roots
The quadratic formula for complex roots is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Since [tex]\(\Delta\)[/tex] is negative, we rewrite [tex]\(\sqrt{\Delta}\)[/tex] as [tex]\(\sqrt{-40} = i\sqrt{40}\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
[tex]\[ x = \frac{-4 \pm i\sqrt{40}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-4 \pm i\sqrt{40}}{4} \][/tex]
[tex]\[ x = \frac{-4}{4} \pm \frac{i\sqrt{40}}{4} \][/tex]
[tex]\[ x = -1 \pm \frac{i\sqrt{40}}{4} \][/tex]
Simplifying further, we use [tex]\(\sqrt{40} = 2\sqrt{10}\)[/tex]:
[tex]\[ x = -1 \pm \frac{2i\sqrt{10}}{4} \][/tex]
[tex]\[ x = -1 \pm \frac{i\sqrt{10}}{2} \][/tex]
Thus, the roots are:
[tex]\[ x_1 = -1 + \frac{i\sqrt{10}}{2}, \quad x_2 = -1 - \frac{i\sqrt{10}}{2} \][/tex]
Given these simplifications, we observe that the imaginary parts are:
[tex]\[ \frac{\sqrt{10}}{2} \approx 1.5811388300841898 \][/tex]
Thus, the roots can be written as:
[tex]\[ x_1 = -1 + 1.5811388300841898i, \quad x_2 = -1 - 1.5811388300841898i \][/tex]
### Final Answer:
1. (a) The polynomial [tex]\(2x^2 + 4x + 7\)[/tex] has 2 roots.
2. (b) The roots of the polynomial [tex]\(2x^2 + 4x + 7\)[/tex] are:
[tex]\[ x_1 = -1 + 1.5811388300841898i, \quad x_2 = -1 - 1.5811388300841898i \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.