Get expert advice and community support for your questions on IDNLearn.com. Discover prompt and accurate responses from our experts, ensuring you get the information you need quickly.
Sagot :
Certainly! Let's graph the equation [tex]\( y = -x^2 - 12x - 35 \)[/tex] step-by-step, identifying key points including the vertex and the roots of the parabola.
### Step 1: Identify the shape and direction of the parabola
The equation [tex]\( y = -x^2 - 12x - 35 \)[/tex] represents a quadratic function in the form [tex]\( y = ax^2 + bx + c \)[/tex], where [tex]\( a = -1 \)[/tex], [tex]\( b = -12 \)[/tex], and [tex]\( c = -35 \)[/tex]. Since the coefficient [tex]\( a \)[/tex] is negative, the parabola opens downwards.
### Step 2: Find the vertex of the parabola
The vertex, for a quadratic equation of the form [tex]\( y = ax^2 + bx + c \)[/tex], can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Plugging in the values:
[tex]\[ x = -\frac{-12}{2(-1)} = \frac{12}{-2} = -6 \][/tex]
Now, substitute [tex]\( x = -6 \)[/tex] back into the equation to find the corresponding [tex]\( y \)[/tex]-coordinate:
[tex]\[ y = -(-6)^2 - 12(-6) - 35 \][/tex]
[tex]\[ y = -36 + 72 - 35 \][/tex]
[tex]\[ y = 1 \][/tex]
So, the vertex of the parabola is at [tex]\( (-6, 1) \)[/tex].
### Step 3: Find the roots of the equation (where [tex]\( y = 0 \)[/tex])
To find the roots, we solve the equation [tex]\( -x^2 - 12x - 35 = 0 \)[/tex]. This can be factored or solved using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting [tex]\( a = -1 \)[/tex], [tex]\( b = -12 \)[/tex], and [tex]\( c = -35 \)[/tex]:
[tex]\[ x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(-1)(-35)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{12 \pm \sqrt{144 - 140}}{-2} \][/tex]
[tex]\[ x = \frac{12 \pm \sqrt{4}}{-2} \][/tex]
[tex]\[ x = \frac{12 \pm 2}{-2} \][/tex]
So, the roots are:
[tex]\[ x = \frac{14}{-2} = -7 \][/tex]
[tex]\[ x = \frac{10}{-2} = -5 \][/tex]
Thus, the roots are at [tex]\( (-7, 0) \)[/tex] and [tex]\( (-5, 0) \)[/tex].
### Step 4: Identify two additional points on the graph
We can choose two [tex]\( x \)[/tex]-values slightly away from the vertex and roots:
- Let [tex]\( x = -8 \)[/tex]:
[tex]\[ y = -(-8)^2 - 12(-8) - 35 \][/tex]
[tex]\[ y = -64 + 96 - 35 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the point is [tex]\( (-8, -3) \)[/tex].
- Let [tex]\( x = -4 \)[/tex]:
[tex]\[ y = -(-4)^2 - 12(-4) - 35 \][/tex]
[tex]\[ y = -16 + 48 - 35 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the point is [tex]\( (-4, -3) \)[/tex].
### Step 5: Plot the points and draw the parabola
We have the following points to plot:
- Vertex: [tex]\( (-6, 1) \)[/tex]
- Roots: [tex]\( (-7, 0) \)[/tex] and [tex]\( (-5, 0) \)[/tex]
- Additional points: [tex]\( (-8, -3) \)[/tex] and [tex]\( (-4, -3) \)[/tex]
Now, plot these points on a graph, and draw a smooth curve through them to represent the parabola.
Graph:
[tex]\[ \begin{array}{c|ccccccc} x & -8 & -7 & -6 & -5 & -4 \\ \hline y & -3 & 0 & 1 & 0 & -3 \\ \end{array} \][/tex]
By plotting these points and joining them smoothly, we obtain the graph of [tex]\( y = -x^2 - 12x - 35 \)[/tex].
### Step 1: Identify the shape and direction of the parabola
The equation [tex]\( y = -x^2 - 12x - 35 \)[/tex] represents a quadratic function in the form [tex]\( y = ax^2 + bx + c \)[/tex], where [tex]\( a = -1 \)[/tex], [tex]\( b = -12 \)[/tex], and [tex]\( c = -35 \)[/tex]. Since the coefficient [tex]\( a \)[/tex] is negative, the parabola opens downwards.
### Step 2: Find the vertex of the parabola
The vertex, for a quadratic equation of the form [tex]\( y = ax^2 + bx + c \)[/tex], can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Plugging in the values:
[tex]\[ x = -\frac{-12}{2(-1)} = \frac{12}{-2} = -6 \][/tex]
Now, substitute [tex]\( x = -6 \)[/tex] back into the equation to find the corresponding [tex]\( y \)[/tex]-coordinate:
[tex]\[ y = -(-6)^2 - 12(-6) - 35 \][/tex]
[tex]\[ y = -36 + 72 - 35 \][/tex]
[tex]\[ y = 1 \][/tex]
So, the vertex of the parabola is at [tex]\( (-6, 1) \)[/tex].
### Step 3: Find the roots of the equation (where [tex]\( y = 0 \)[/tex])
To find the roots, we solve the equation [tex]\( -x^2 - 12x - 35 = 0 \)[/tex]. This can be factored or solved using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting [tex]\( a = -1 \)[/tex], [tex]\( b = -12 \)[/tex], and [tex]\( c = -35 \)[/tex]:
[tex]\[ x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(-1)(-35)}}{2(-1)} \][/tex]
[tex]\[ x = \frac{12 \pm \sqrt{144 - 140}}{-2} \][/tex]
[tex]\[ x = \frac{12 \pm \sqrt{4}}{-2} \][/tex]
[tex]\[ x = \frac{12 \pm 2}{-2} \][/tex]
So, the roots are:
[tex]\[ x = \frac{14}{-2} = -7 \][/tex]
[tex]\[ x = \frac{10}{-2} = -5 \][/tex]
Thus, the roots are at [tex]\( (-7, 0) \)[/tex] and [tex]\( (-5, 0) \)[/tex].
### Step 4: Identify two additional points on the graph
We can choose two [tex]\( x \)[/tex]-values slightly away from the vertex and roots:
- Let [tex]\( x = -8 \)[/tex]:
[tex]\[ y = -(-8)^2 - 12(-8) - 35 \][/tex]
[tex]\[ y = -64 + 96 - 35 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the point is [tex]\( (-8, -3) \)[/tex].
- Let [tex]\( x = -4 \)[/tex]:
[tex]\[ y = -(-4)^2 - 12(-4) - 35 \][/tex]
[tex]\[ y = -16 + 48 - 35 \][/tex]
[tex]\[ y = -3 \][/tex]
So, the point is [tex]\( (-4, -3) \)[/tex].
### Step 5: Plot the points and draw the parabola
We have the following points to plot:
- Vertex: [tex]\( (-6, 1) \)[/tex]
- Roots: [tex]\( (-7, 0) \)[/tex] and [tex]\( (-5, 0) \)[/tex]
- Additional points: [tex]\( (-8, -3) \)[/tex] and [tex]\( (-4, -3) \)[/tex]
Now, plot these points on a graph, and draw a smooth curve through them to represent the parabola.
Graph:
[tex]\[ \begin{array}{c|ccccccc} x & -8 & -7 & -6 & -5 & -4 \\ \hline y & -3 & 0 & 1 & 0 & -3 \\ \end{array} \][/tex]
By plotting these points and joining them smoothly, we obtain the graph of [tex]\( y = -x^2 - 12x - 35 \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.