From science to arts, IDNLearn.com has the answers to all your questions. Ask any question and receive timely, accurate responses from our dedicated community of experts.

Find the inverse of the matrix below.

[tex]\[ \left[\begin{array}{ll} 2 & 0 \\ 9 & 1 \end{array}\right] \][/tex]

If necessary, round to the nearest hundredth.


Sagot :

To find the inverse of a matrix [tex]\( A \)[/tex], we must follow a series of steps. Here, matrix [tex]\( A \)[/tex] is given by:

[tex]\[ A = \begin{pmatrix} 2 & 0 \\ 9 & 1 \end{pmatrix} \][/tex]

### 1. Determining the Determinant

First, we calculate the determinant of matrix [tex]\( A \)[/tex]. For a 2x2 matrix [tex]\( A \)[/tex] represented as:

[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]

The determinant, [tex]\( \text{det}(A) \)[/tex], is calculated as:

[tex]\[ \text{det}(A) = ad - bc \][/tex]

Substituting the values from our matrix [tex]\( A \)[/tex]:

[tex]\[ a = 2, \quad b = 0, \quad c = 9, \quad d = 1 \][/tex]

So,

[tex]\[ \text{det}(A) = (2 \cdot 1) - (0 \cdot 9) = 2 \][/tex]

### 2. Checking Invertibility

Since the determinant is non-zero ([tex]\( \text{det}(A) = 2 \)[/tex]), matrix [tex]\( A \)[/tex] is invertible.

### 3. Finding the Inverse

The formula for the inverse of a 2x2 matrix [tex]\( A \)[/tex] is:

[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]

Using our values:

[tex]\[ A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -9 & 2 \end{pmatrix} \][/tex]

Now, multiplying by [tex]\( \frac{1}{2} \)[/tex]:

[tex]\[ A^{-1} = \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{-9}{2} & 1 \end{pmatrix} \][/tex]

This simplifies to:

[tex]\[ A^{-1} = \begin{pmatrix} 0.5 & 0 \\ -4.5 & 1 \end{pmatrix} \][/tex]

### 4. Rounding (if necessary)

In this case, all values are already in their simplest form, so rounding is not necessary beyond what has been done.

### Final Answer

The inverse of the matrix [tex]\( A \)[/tex] is:

[tex]\[ \boxed{\begin{pmatrix} 0.5 & 0 \\ -4.5 & 1 \end{pmatrix}} \][/tex]

This is the final result, and all values are correctly represented to the nearest hundredth if necessary.