Get personalized answers to your unique questions on IDNLearn.com. Ask anything and receive immediate, well-informed answers from our dedicated community of experts.
Sagot :
To find the inverse of a [tex]\(2 \times 2\)[/tex] matrix, we utilize the following matrix inversion formula. For a matrix [tex]\(A\)[/tex] represented as:
[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
its inverse [tex]\(A^{-1}\)[/tex] can be calculated by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
provided that [tex]\(ad - bc \neq 0\)[/tex] (which ensures that the matrix is invertible).
Given the matrix
[tex]\[ A = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
we identify:
[tex]\(a = 5\)[/tex], [tex]\(b = 6\)[/tex], [tex]\(c = 7\)[/tex], and [tex]\(d = 8\)[/tex].
First, we compute the determinant of [tex]\(A\)[/tex], denoted by [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = (5)(8) - (6)(7) = 40 - 42 = -2 \][/tex]
Since the determinant is non-zero, the inverse exists and can be calculated as follows:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -6 \\ -7 & 5 \end{pmatrix} \][/tex]
Next, distribute [tex]\(\frac{1}{-2}\)[/tex] across all elements of the matrix:
[tex]\[ A^{-1} = \begin{pmatrix} 8 \cdot \frac{1}{-2} & -6 \cdot \frac{1}{-2} \\ -7 \cdot \frac{1}{-2} & 5 \cdot \frac{1}{-2} \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
Finally, rounding the elements to the nearest hundredth, we get:
[tex]\[ A^{-1} \approx \begin{pmatrix} -4.00 & 3.00 \\ 3.50 & -2.50 \end{pmatrix} \][/tex]
So, the inverse of the matrix
[tex]\[ \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
is
[tex]\[ \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
rounded to the nearest hundredth.
[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
its inverse [tex]\(A^{-1}\)[/tex] can be calculated by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
provided that [tex]\(ad - bc \neq 0\)[/tex] (which ensures that the matrix is invertible).
Given the matrix
[tex]\[ A = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
we identify:
[tex]\(a = 5\)[/tex], [tex]\(b = 6\)[/tex], [tex]\(c = 7\)[/tex], and [tex]\(d = 8\)[/tex].
First, we compute the determinant of [tex]\(A\)[/tex], denoted by [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = (5)(8) - (6)(7) = 40 - 42 = -2 \][/tex]
Since the determinant is non-zero, the inverse exists and can be calculated as follows:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -6 \\ -7 & 5 \end{pmatrix} \][/tex]
Next, distribute [tex]\(\frac{1}{-2}\)[/tex] across all elements of the matrix:
[tex]\[ A^{-1} = \begin{pmatrix} 8 \cdot \frac{1}{-2} & -6 \cdot \frac{1}{-2} \\ -7 \cdot \frac{1}{-2} & 5 \cdot \frac{1}{-2} \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
Finally, rounding the elements to the nearest hundredth, we get:
[tex]\[ A^{-1} \approx \begin{pmatrix} -4.00 & 3.00 \\ 3.50 & -2.50 \end{pmatrix} \][/tex]
So, the inverse of the matrix
[tex]\[ \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
is
[tex]\[ \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
rounded to the nearest hundredth.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.