Join the IDNLearn.com community and start getting the answers you need today. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
To find the inverse of a [tex]\(2 \times 2\)[/tex] matrix, we utilize the following matrix inversion formula. For a matrix [tex]\(A\)[/tex] represented as:
[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
its inverse [tex]\(A^{-1}\)[/tex] can be calculated by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
provided that [tex]\(ad - bc \neq 0\)[/tex] (which ensures that the matrix is invertible).
Given the matrix
[tex]\[ A = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
we identify:
[tex]\(a = 5\)[/tex], [tex]\(b = 6\)[/tex], [tex]\(c = 7\)[/tex], and [tex]\(d = 8\)[/tex].
First, we compute the determinant of [tex]\(A\)[/tex], denoted by [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = (5)(8) - (6)(7) = 40 - 42 = -2 \][/tex]
Since the determinant is non-zero, the inverse exists and can be calculated as follows:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -6 \\ -7 & 5 \end{pmatrix} \][/tex]
Next, distribute [tex]\(\frac{1}{-2}\)[/tex] across all elements of the matrix:
[tex]\[ A^{-1} = \begin{pmatrix} 8 \cdot \frac{1}{-2} & -6 \cdot \frac{1}{-2} \\ -7 \cdot \frac{1}{-2} & 5 \cdot \frac{1}{-2} \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
Finally, rounding the elements to the nearest hundredth, we get:
[tex]\[ A^{-1} \approx \begin{pmatrix} -4.00 & 3.00 \\ 3.50 & -2.50 \end{pmatrix} \][/tex]
So, the inverse of the matrix
[tex]\[ \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
is
[tex]\[ \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
rounded to the nearest hundredth.
[tex]\[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]
its inverse [tex]\(A^{-1}\)[/tex] can be calculated by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
provided that [tex]\(ad - bc \neq 0\)[/tex] (which ensures that the matrix is invertible).
Given the matrix
[tex]\[ A = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
we identify:
[tex]\(a = 5\)[/tex], [tex]\(b = 6\)[/tex], [tex]\(c = 7\)[/tex], and [tex]\(d = 8\)[/tex].
First, we compute the determinant of [tex]\(A\)[/tex], denoted by [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = (5)(8) - (6)(7) = 40 - 42 = -2 \][/tex]
Since the determinant is non-zero, the inverse exists and can be calculated as follows:
[tex]\[ A^{-1} = \frac{1}{-2} \begin{pmatrix} 8 & -6 \\ -7 & 5 \end{pmatrix} \][/tex]
Next, distribute [tex]\(\frac{1}{-2}\)[/tex] across all elements of the matrix:
[tex]\[ A^{-1} = \begin{pmatrix} 8 \cdot \frac{1}{-2} & -6 \cdot \frac{1}{-2} \\ -7 \cdot \frac{1}{-2} & 5 \cdot \frac{1}{-2} \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
Finally, rounding the elements to the nearest hundredth, we get:
[tex]\[ A^{-1} \approx \begin{pmatrix} -4.00 & 3.00 \\ 3.50 & -2.50 \end{pmatrix} \][/tex]
So, the inverse of the matrix
[tex]\[ \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \][/tex]
is
[tex]\[ \begin{pmatrix} -4 & 3 \\ 3.5 & -2.5 \end{pmatrix} \][/tex]
rounded to the nearest hundredth.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.