Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Let's analyze the statements given about the functions [tex]\( g(x) = x^2 \)[/tex] and [tex]\( h(x) = -x^2 \)[/tex].
1. For any value of [tex]\( x \)[/tex], [tex]\( g(x) \)[/tex] will always be greater than [tex]\( h(x) \)[/tex].
To determine this, consider:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
For any [tex]\( x \in \mathbb{R} \)[/tex]:
[tex]\[ x^2 \geq 0 \][/tex]
[tex]\[ -x^2 \leq 0 \][/tex]
Since [tex]\( x^2 \)[/tex] is always non-negative and [tex]\(-x^2\)[/tex] is always non-positive, it is evident that [tex]\( x^2 \)[/tex] is always greater than [tex]\(-x^2\)[/tex] for any [tex]\( x \)[/tex].
Therefore, this statement is true.
2. For any value of [tex]\( x \)[/tex], [tex]\( h(x) \)[/tex] will always be greater than [tex]\( g(x) \)[/tex].
For any [tex]\( x \in \mathbb{R} \)[/tex]:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
As shown earlier:
[tex]\[ x^2 \geq 0 \][/tex]
[tex]\[ -x^2 \leq 0 \][/tex]
Hence, [tex]\( g(x) = x^2 \geq -x^2 = h(x) \)[/tex] and [tex]\( -x^2 \)[/tex] cannot be greater than [tex]\( x^2 \)[/tex] for any [tex]\( x \)[/tex].
Therefore, this statement is false.
3. [tex]\( g(x) > h(x) \)[/tex] for [tex]\( x = -1 \)[/tex].
Substitute [tex]\( x = -1 \)[/tex] into both functions:
[tex]\[ g(-1) = (-1)^2 = 1 \][/tex]
[tex]\[ h(-1) = -(-1)^2 = -1 \][/tex]
Clearly:
[tex]\[ g(-1) = 1 \][/tex]
[tex]\[ h(-1) = -1 \][/tex]
[tex]\[ 1 > -1 \][/tex]
Therefore, this statement is true.
4. [tex]\( g(x) < h(x) \)[/tex] for [tex]\( x = 3 \)[/tex].
Substitute [tex]\( x = 3 \)[/tex] into both functions:
[tex]\[ g(3) = 3^2 = 9 \][/tex]
[tex]\[ h(3) = -(3^2) = -9 \][/tex]
Clearly:
[tex]\[ g(3) = 9 \][/tex]
[tex]\[ h(3) = -9 \][/tex]
[tex]\[ 9 \not< -9 \][/tex]
Therefore, this statement is false.
5. For positive values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
For positive [tex]\( x \)[/tex]:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
Since any positive [tex]\( x \)[/tex] squared is still positive:
[tex]\[ x^2 > -x^2 \][/tex]
Therefore, this statement is true.
6. For negative values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
For negative [tex]\( x \)[/tex]:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
Since any negative [tex]\( x \)[/tex] squared is still positive:
[tex]\[ x^2 > -x^2 \][/tex]
Therefore, this statement is true.
Thus, the true statements are:
- For any value of [tex]\( x \)[/tex], [tex]\( g(x) \)[/tex] will always be greater than [tex]\( h(x) \)[/tex].
- [tex]\( g(x) > h(x) \)[/tex] for [tex]\( x = -1 \)[/tex].
- For positive values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
- For negative values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
1. For any value of [tex]\( x \)[/tex], [tex]\( g(x) \)[/tex] will always be greater than [tex]\( h(x) \)[/tex].
To determine this, consider:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
For any [tex]\( x \in \mathbb{R} \)[/tex]:
[tex]\[ x^2 \geq 0 \][/tex]
[tex]\[ -x^2 \leq 0 \][/tex]
Since [tex]\( x^2 \)[/tex] is always non-negative and [tex]\(-x^2\)[/tex] is always non-positive, it is evident that [tex]\( x^2 \)[/tex] is always greater than [tex]\(-x^2\)[/tex] for any [tex]\( x \)[/tex].
Therefore, this statement is true.
2. For any value of [tex]\( x \)[/tex], [tex]\( h(x) \)[/tex] will always be greater than [tex]\( g(x) \)[/tex].
For any [tex]\( x \in \mathbb{R} \)[/tex]:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
As shown earlier:
[tex]\[ x^2 \geq 0 \][/tex]
[tex]\[ -x^2 \leq 0 \][/tex]
Hence, [tex]\( g(x) = x^2 \geq -x^2 = h(x) \)[/tex] and [tex]\( -x^2 \)[/tex] cannot be greater than [tex]\( x^2 \)[/tex] for any [tex]\( x \)[/tex].
Therefore, this statement is false.
3. [tex]\( g(x) > h(x) \)[/tex] for [tex]\( x = -1 \)[/tex].
Substitute [tex]\( x = -1 \)[/tex] into both functions:
[tex]\[ g(-1) = (-1)^2 = 1 \][/tex]
[tex]\[ h(-1) = -(-1)^2 = -1 \][/tex]
Clearly:
[tex]\[ g(-1) = 1 \][/tex]
[tex]\[ h(-1) = -1 \][/tex]
[tex]\[ 1 > -1 \][/tex]
Therefore, this statement is true.
4. [tex]\( g(x) < h(x) \)[/tex] for [tex]\( x = 3 \)[/tex].
Substitute [tex]\( x = 3 \)[/tex] into both functions:
[tex]\[ g(3) = 3^2 = 9 \][/tex]
[tex]\[ h(3) = -(3^2) = -9 \][/tex]
Clearly:
[tex]\[ g(3) = 9 \][/tex]
[tex]\[ h(3) = -9 \][/tex]
[tex]\[ 9 \not< -9 \][/tex]
Therefore, this statement is false.
5. For positive values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
For positive [tex]\( x \)[/tex]:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
Since any positive [tex]\( x \)[/tex] squared is still positive:
[tex]\[ x^2 > -x^2 \][/tex]
Therefore, this statement is true.
6. For negative values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
For negative [tex]\( x \)[/tex]:
[tex]\[ g(x) = x^2 \][/tex]
[tex]\[ h(x) = -x^2 \][/tex]
Since any negative [tex]\( x \)[/tex] squared is still positive:
[tex]\[ x^2 > -x^2 \][/tex]
Therefore, this statement is true.
Thus, the true statements are:
- For any value of [tex]\( x \)[/tex], [tex]\( g(x) \)[/tex] will always be greater than [tex]\( h(x) \)[/tex].
- [tex]\( g(x) > h(x) \)[/tex] for [tex]\( x = -1 \)[/tex].
- For positive values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
- For negative values of [tex]\( x \)[/tex], [tex]\( g(x) > h(x) \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.