Connect with knowledgeable individuals and find the best answers at IDNLearn.com. Discover comprehensive answers from knowledgeable members of our community, covering a wide range of topics to meet all your informational needs.
Sagot :
Let's address these differential equations one at a time, and find both the general solutions and particular solutions that pass through the origin (0, 0).
### Part (i)
Given the differential equation:
[tex]\[ \frac{d \theta}{d t} = \sin t + \cos t \][/tex]
First, we will find the general solution. We can integrate both sides with respect to [tex]\( t \)[/tex]:
[tex]\[ \int \frac{d \theta}{d t} \, dt = \int (\sin t + \cos t) \, dt \][/tex]
This simplifies to:
[tex]\[ \theta(t) = \int \sin t \, dt + \int \cos t \, dt \][/tex]
Integrate each term separately:
[tex]\[ \theta(t) = -\cos t + \sin t + C \][/tex]
Hence, the general solution is:
[tex]\[ \theta(t) = \sin t - \cos t + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\(\theta(0) = 0\)[/tex]:
[tex]\[ \theta(0) = \sin 0 - \cos 0 + C = 0 - 1 + C = -1 + C = 0 \][/tex]
Thus, [tex]\( C = 1 \)[/tex].
Therefore, the particular solution is:
[tex]\[ \theta(t) = \sin t - \cos t + 1 \][/tex]
### Part (ii)
Given the differential equation:
[tex]\[ \frac{d y}{d x} = \frac{1}{x^2 - 1} \][/tex]
First, decompose the right-hand side into partial fractions. The expression [tex]\( \frac{1}{x^2 - 1} \)[/tex] can be factored as [tex]\( \frac{1}{(x - 1)(x + 1)} \)[/tex]:
[tex]\[ \frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we get:
[tex]\[ 1 = A(x + 1) + B(x - 1) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 = A(1 + 1) + B(1 - 1) \][/tex]
[tex]\[ 1 = 2A \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]
Substituting [tex]\( x = -1 \)[/tex]:
[tex]\[ 1 = A(-1 + 1) + B(-1 - 1) \][/tex]
[tex]\[ 1 = -2B \][/tex]
[tex]\[ B = -\frac{1}{2} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
Thus, the given differential equation becomes:
[tex]\[ \frac{d y}{d x} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
We integrate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{d y}{d x} \, dx = \int \left( \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \right) \, dx \][/tex]
This simplifies to:
[tex]\[ y(x) = \frac{1}{2} \int \frac{1}{x - 1} \, dx - \frac{1}{2} \int \frac{1}{x + 1} \, dx + C \][/tex]
Integrate each term separately:
[tex]\[ y(x) = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C \][/tex]
Combining the logarithmic terms, we get:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
Hence, the general solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{2} \ln \left| \frac{0 - 1}{0 + 1} \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln \left| -1 \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln 1 + C \][/tex]
[tex]\[ 0 = 0 + C \][/tex]
Thus, [tex]\( C = 0 \)[/tex].
Therefore, the particular solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \][/tex]
### Part (i)
Given the differential equation:
[tex]\[ \frac{d \theta}{d t} = \sin t + \cos t \][/tex]
First, we will find the general solution. We can integrate both sides with respect to [tex]\( t \)[/tex]:
[tex]\[ \int \frac{d \theta}{d t} \, dt = \int (\sin t + \cos t) \, dt \][/tex]
This simplifies to:
[tex]\[ \theta(t) = \int \sin t \, dt + \int \cos t \, dt \][/tex]
Integrate each term separately:
[tex]\[ \theta(t) = -\cos t + \sin t + C \][/tex]
Hence, the general solution is:
[tex]\[ \theta(t) = \sin t - \cos t + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\(\theta(0) = 0\)[/tex]:
[tex]\[ \theta(0) = \sin 0 - \cos 0 + C = 0 - 1 + C = -1 + C = 0 \][/tex]
Thus, [tex]\( C = 1 \)[/tex].
Therefore, the particular solution is:
[tex]\[ \theta(t) = \sin t - \cos t + 1 \][/tex]
### Part (ii)
Given the differential equation:
[tex]\[ \frac{d y}{d x} = \frac{1}{x^2 - 1} \][/tex]
First, decompose the right-hand side into partial fractions. The expression [tex]\( \frac{1}{x^2 - 1} \)[/tex] can be factored as [tex]\( \frac{1}{(x - 1)(x + 1)} \)[/tex]:
[tex]\[ \frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we get:
[tex]\[ 1 = A(x + 1) + B(x - 1) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 = A(1 + 1) + B(1 - 1) \][/tex]
[tex]\[ 1 = 2A \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]
Substituting [tex]\( x = -1 \)[/tex]:
[tex]\[ 1 = A(-1 + 1) + B(-1 - 1) \][/tex]
[tex]\[ 1 = -2B \][/tex]
[tex]\[ B = -\frac{1}{2} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
Thus, the given differential equation becomes:
[tex]\[ \frac{d y}{d x} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
We integrate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{d y}{d x} \, dx = \int \left( \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \right) \, dx \][/tex]
This simplifies to:
[tex]\[ y(x) = \frac{1}{2} \int \frac{1}{x - 1} \, dx - \frac{1}{2} \int \frac{1}{x + 1} \, dx + C \][/tex]
Integrate each term separately:
[tex]\[ y(x) = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C \][/tex]
Combining the logarithmic terms, we get:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
Hence, the general solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{2} \ln \left| \frac{0 - 1}{0 + 1} \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln \left| -1 \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln 1 + C \][/tex]
[tex]\[ 0 = 0 + C \][/tex]
Thus, [tex]\( C = 0 \)[/tex].
Therefore, the particular solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.