From beginner to expert, IDNLearn.com has answers for everyone. Ask anything and receive prompt, well-informed answers from our community of experienced experts.

Find the general solution of the following differential equations, and in each case, find the particular solution that passes through the origin.

(i)
[tex]\[
\frac{d \theta}{d t} = \sin t + \cos t
\][/tex]

(ii)
[tex]\[
\frac{d y}{d x} = \frac{1}{x^2 - 1}
\][/tex]
(use partial fractions)


Sagot :

Let's address these differential equations one at a time, and find both the general solutions and particular solutions that pass through the origin (0, 0).

### Part (i)
Given the differential equation:
[tex]\[ \frac{d \theta}{d t} = \sin t + \cos t \][/tex]

First, we will find the general solution. We can integrate both sides with respect to [tex]\( t \)[/tex]:
[tex]\[ \int \frac{d \theta}{d t} \, dt = \int (\sin t + \cos t) \, dt \][/tex]

This simplifies to:
[tex]\[ \theta(t) = \int \sin t \, dt + \int \cos t \, dt \][/tex]

Integrate each term separately:
[tex]\[ \theta(t) = -\cos t + \sin t + C \][/tex]

Hence, the general solution is:
[tex]\[ \theta(t) = \sin t - \cos t + C \][/tex]

To find the particular solution that passes through the origin, we use the initial condition [tex]\(\theta(0) = 0\)[/tex]:
[tex]\[ \theta(0) = \sin 0 - \cos 0 + C = 0 - 1 + C = -1 + C = 0 \][/tex]
Thus, [tex]\( C = 1 \)[/tex].

Therefore, the particular solution is:
[tex]\[ \theta(t) = \sin t - \cos t + 1 \][/tex]

### Part (ii)
Given the differential equation:
[tex]\[ \frac{d y}{d x} = \frac{1}{x^2 - 1} \][/tex]

First, decompose the right-hand side into partial fractions. The expression [tex]\( \frac{1}{x^2 - 1} \)[/tex] can be factored as [tex]\( \frac{1}{(x - 1)(x + 1)} \)[/tex]:
[tex]\[ \frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} \][/tex]

Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we get:
[tex]\[ 1 = A(x + 1) + B(x - 1) \][/tex]

Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 = A(1 + 1) + B(1 - 1) \][/tex]
[tex]\[ 1 = 2A \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]

Substituting [tex]\( x = -1 \)[/tex]:
[tex]\[ 1 = A(-1 + 1) + B(-1 - 1) \][/tex]
[tex]\[ 1 = -2B \][/tex]
[tex]\[ B = -\frac{1}{2} \][/tex]

Therefore,
[tex]\[ \frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]

Thus, the given differential equation becomes:
[tex]\[ \frac{d y}{d x} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]

We integrate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{d y}{d x} \, dx = \int \left( \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \right) \, dx \][/tex]

This simplifies to:
[tex]\[ y(x) = \frac{1}{2} \int \frac{1}{x - 1} \, dx - \frac{1}{2} \int \frac{1}{x + 1} \, dx + C \][/tex]

Integrate each term separately:
[tex]\[ y(x) = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C \][/tex]

Combining the logarithmic terms, we get:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]

Hence, the general solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]

To find the particular solution that passes through the origin, we use the initial condition [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{2} \ln \left| \frac{0 - 1}{0 + 1} \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln \left| -1 \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln 1 + C \][/tex]
[tex]\[ 0 = 0 + C \][/tex]

Thus, [tex]\( C = 0 \)[/tex].

Therefore, the particular solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \][/tex]