From beginner to expert, IDNLearn.com has answers for everyone. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
Let's address these differential equations one at a time, and find both the general solutions and particular solutions that pass through the origin (0, 0).
### Part (i)
Given the differential equation:
[tex]\[ \frac{d \theta}{d t} = \sin t + \cos t \][/tex]
First, we will find the general solution. We can integrate both sides with respect to [tex]\( t \)[/tex]:
[tex]\[ \int \frac{d \theta}{d t} \, dt = \int (\sin t + \cos t) \, dt \][/tex]
This simplifies to:
[tex]\[ \theta(t) = \int \sin t \, dt + \int \cos t \, dt \][/tex]
Integrate each term separately:
[tex]\[ \theta(t) = -\cos t + \sin t + C \][/tex]
Hence, the general solution is:
[tex]\[ \theta(t) = \sin t - \cos t + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\(\theta(0) = 0\)[/tex]:
[tex]\[ \theta(0) = \sin 0 - \cos 0 + C = 0 - 1 + C = -1 + C = 0 \][/tex]
Thus, [tex]\( C = 1 \)[/tex].
Therefore, the particular solution is:
[tex]\[ \theta(t) = \sin t - \cos t + 1 \][/tex]
### Part (ii)
Given the differential equation:
[tex]\[ \frac{d y}{d x} = \frac{1}{x^2 - 1} \][/tex]
First, decompose the right-hand side into partial fractions. The expression [tex]\( \frac{1}{x^2 - 1} \)[/tex] can be factored as [tex]\( \frac{1}{(x - 1)(x + 1)} \)[/tex]:
[tex]\[ \frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we get:
[tex]\[ 1 = A(x + 1) + B(x - 1) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 = A(1 + 1) + B(1 - 1) \][/tex]
[tex]\[ 1 = 2A \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]
Substituting [tex]\( x = -1 \)[/tex]:
[tex]\[ 1 = A(-1 + 1) + B(-1 - 1) \][/tex]
[tex]\[ 1 = -2B \][/tex]
[tex]\[ B = -\frac{1}{2} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
Thus, the given differential equation becomes:
[tex]\[ \frac{d y}{d x} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
We integrate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{d y}{d x} \, dx = \int \left( \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \right) \, dx \][/tex]
This simplifies to:
[tex]\[ y(x) = \frac{1}{2} \int \frac{1}{x - 1} \, dx - \frac{1}{2} \int \frac{1}{x + 1} \, dx + C \][/tex]
Integrate each term separately:
[tex]\[ y(x) = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C \][/tex]
Combining the logarithmic terms, we get:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
Hence, the general solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{2} \ln \left| \frac{0 - 1}{0 + 1} \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln \left| -1 \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln 1 + C \][/tex]
[tex]\[ 0 = 0 + C \][/tex]
Thus, [tex]\( C = 0 \)[/tex].
Therefore, the particular solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \][/tex]
### Part (i)
Given the differential equation:
[tex]\[ \frac{d \theta}{d t} = \sin t + \cos t \][/tex]
First, we will find the general solution. We can integrate both sides with respect to [tex]\( t \)[/tex]:
[tex]\[ \int \frac{d \theta}{d t} \, dt = \int (\sin t + \cos t) \, dt \][/tex]
This simplifies to:
[tex]\[ \theta(t) = \int \sin t \, dt + \int \cos t \, dt \][/tex]
Integrate each term separately:
[tex]\[ \theta(t) = -\cos t + \sin t + C \][/tex]
Hence, the general solution is:
[tex]\[ \theta(t) = \sin t - \cos t + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\(\theta(0) = 0\)[/tex]:
[tex]\[ \theta(0) = \sin 0 - \cos 0 + C = 0 - 1 + C = -1 + C = 0 \][/tex]
Thus, [tex]\( C = 1 \)[/tex].
Therefore, the particular solution is:
[tex]\[ \theta(t) = \sin t - \cos t + 1 \][/tex]
### Part (ii)
Given the differential equation:
[tex]\[ \frac{d y}{d x} = \frac{1}{x^2 - 1} \][/tex]
First, decompose the right-hand side into partial fractions. The expression [tex]\( \frac{1}{x^2 - 1} \)[/tex] can be factored as [tex]\( \frac{1}{(x - 1)(x + 1)} \)[/tex]:
[tex]\[ \frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex], we get:
[tex]\[ 1 = A(x + 1) + B(x - 1) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ 1 = A(1 + 1) + B(1 - 1) \][/tex]
[tex]\[ 1 = 2A \][/tex]
[tex]\[ A = \frac{1}{2} \][/tex]
Substituting [tex]\( x = -1 \)[/tex]:
[tex]\[ 1 = A(-1 + 1) + B(-1 - 1) \][/tex]
[tex]\[ 1 = -2B \][/tex]
[tex]\[ B = -\frac{1}{2} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
Thus, the given differential equation becomes:
[tex]\[ \frac{d y}{d x} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \][/tex]
We integrate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \int \frac{d y}{d x} \, dx = \int \left( \frac{1/2}{x - 1} - \frac{1/2}{x + 1} \right) \, dx \][/tex]
This simplifies to:
[tex]\[ y(x) = \frac{1}{2} \int \frac{1}{x - 1} \, dx - \frac{1}{2} \int \frac{1}{x + 1} \, dx + C \][/tex]
Integrate each term separately:
[tex]\[ y(x) = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C \][/tex]
Combining the logarithmic terms, we get:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
Hence, the general solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C \][/tex]
To find the particular solution that passes through the origin, we use the initial condition [tex]\( y(0) = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{2} \ln \left| \frac{0 - 1}{0 + 1} \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln \left| -1 \right| + C \][/tex]
[tex]\[ 0 = \frac{1}{2} \ln 1 + C \][/tex]
[tex]\[ 0 = 0 + C \][/tex]
Thus, [tex]\( C = 0 \)[/tex].
Therefore, the particular solution is:
[tex]\[ y(x) = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.