IDNLearn.com is your go-to resource for finding answers to any question you have. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.

List all possible rational zeros given by the Rational Zeros Theorem (but don't check to see which actually are zeros).

Enter your answers as a comma-separated list.

[tex]\[ \frac{P(x)}{D(x)}=2 x^2 - x + 1 + \frac{13 x - 13}{3 x^2 + 13} \][/tex]

[tex]\[ P(x) = 12 x^5 + 8 x^3 - 5 x - 8 \][/tex]

Submit Answer

The polynomial [tex]\( P(x) = 5 x^2 (x-1)^3 (x+9) \)[/tex] has degree 6. The zero 1 has multiplicity 3. The zero 0 has multiplicity 2. It has zeros 0, 1, and -9.

Submit Answer


Sagot :

To solve the problem using the Rational Zeros Theorem, we need to determine the possible rational zeros of the polynomial [tex]\( P(x) = 12x^5 + 8x^3 - 5x - 8 \)[/tex].

The Rational Zeros Theorem states that the possible rational zeros of a polynomial are given by the ratios of the factors of the constant term to the factors of the leading coefficient. Let's identify these factors:

1. Constant Term: The constant term of the polynomial [tex]\( P(x) \)[/tex] is [tex]\(-8\)[/tex]. The factors of [tex]\(-8\)[/tex] are:
[tex]\[ \pm 1, \pm 2, \pm 4, \pm 8 \][/tex]

2. Leading Coefficient: The leading coefficient of the polynomial [tex]\( P(x) \)[/tex] is [tex]\(12\)[/tex]. The factors of [tex]\(12\)[/tex] are:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \][/tex]

3. Possible Rational Zeros: The possible rational zeros are the ratios of the factors of the constant term to the factors of the leading coefficient. We need to form all possible combinations of these ratios:

[tex]\[ \text{Possible rational zeros} = \frac{\text{Factors of constant term}}{\text{Factors of leading coefficient}} \][/tex]

This yields the following combinations:

[tex]\[ \frac{\pm 1}{\pm 1}, \frac{\pm 1}{\pm 2}, \frac{\pm 1}{\pm 3}, \frac{\pm 1}{\pm 4}, \frac{\pm 1}{\pm 6}, \frac{\pm 1}{\pm 12}, \][/tex]
[tex]\[ \frac{\pm 2}{\pm 1}, \frac{\pm 2}{\pm 2}, \frac{\pm 2}{\pm 3}, \frac{\pm 2}{\pm 4}, \frac{\pm 2}{\pm 6}, \frac{\pm 2}{\pm 12}, \][/tex]
[tex]\[ \frac{\pm 4}{\pm 1}, \frac{\pm 4}{\pm 2}, \frac{\pm 4}{\pm 3}, \frac{\pm 4}{\pm 4}, \frac{\pm 4}{\pm 6}, \frac{\pm 4}{\pm 12}, \][/tex]
[tex]\[ \frac{\pm 8}{\pm 1}, \frac{\pm 8}{\pm 2}, \frac{\pm 8}{\pm 3}, \frac{\pm 8}{\pm 4}, \frac{\pm 8}{\pm 6}, \frac{\pm 8}{\pm 12} \][/tex]

Simplifying these combinations, we get the following unique possible rational zeros:

[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \][/tex]
[tex]\[ \pm 2, \pm \frac{2}{3}, \pm \frac{2}{4} \quad (= \pm \frac{1}{2}), \quad \pm \frac{2}{6} \quad (= \pm \frac{1}{3}), \quad \pm \frac{2}{12} \quad (= \pm \frac{1}{6}), \][/tex]
[tex]\[ \pm 4, \pm \frac{4}{2} \quad (= \pm 2), \quad \pm \frac{4}{3}, \quad \pm \frac{4}{4} \quad (= \pm 1), \quad \pm \frac{4}{6} \quad (= \pm \frac{2}{3}), \quad \pm \frac{4}{12} \quad (= \pm \frac{1}{3}), \][/tex]
[tex]\[ \pm 8, \pm \frac{8}{2} \quad (= \pm 4), \quad \pm \frac{8}{3}, \quad \pm \frac{8}{4} \quad (= \pm 2), \quad \pm \frac{8}{6} \quad (= \pm \frac{4}{3}), \quad \pm \frac{8}{12} \quad (= \pm \frac{2}{3}) \][/tex]

Collecting all unique values, we have:

[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm 2, \pm \frac{2}{3}, \pm 4, \pm \frac{4}{3}, \pm 8, \pm \frac{8}{3} \][/tex]

Thus, the list of possible rational zeros for the polynomial [tex]\( P(x) = 12x^5 + 8x^3 - 5x - 8 \)[/tex] is:

[tex]\[ x = \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{4}, \pm \frac{1}{6}, \pm \frac{1}{12}, \pm 2, \pm \frac{2}{3}, \pm 4, \pm \frac{4}{3}, \pm 8, \pm \frac{8}{3} \][/tex]