Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.
Sagot :
To determine the type of function representing the given table of values, we need to analyze the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 8 \\ \hline -1 & 6 \\ \hline 0 & 4 \\ \hline 1 & 2 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
### Step-by-Step Solution:
1. Observe the Differences in [tex]\( y \)[/tex]-Values:
First, calculate the differences between consecutive [tex]\( y \)[/tex]-values to check if they form a constant ratio.
[tex]\[ \Delta y = y_{i+1} - y_i \][/tex]
Let's calculate these:
[tex]\[ \begin{aligned} &\Delta y_1 = y_2 - y_1 = 6 - 8 = -2 \\ &\Delta y_2 = y_3 - y_2 = 4 - 6 = -2 \\ &\Delta y_3 = y_4 - y_3 = 2 - 4 = -2 \\ &\Delta y_4 = y_5 - y_4 = 0 - 2 = -2 \\ \end{aligned} \][/tex]
The differences in [tex]\( y \)[/tex]-values are [tex]\( -2 \)[/tex], [tex]\( -2 \)[/tex], [tex]\( -2 \)[/tex], and [tex]\( -2 \)[/tex].
2. Check the Differences in [tex]\( x \)[/tex]-Values:
Now, check the differences between consecutive [tex]\( x \)[/tex]-values.
[tex]\[ \Delta x = x_{i+1} - x_i \][/tex]
Since [tex]\( x \)[/tex]-values are evenly spaced [tex]\( (\Delta x = 1) \)[/tex]:
[tex]\[ \begin{aligned} &\Delta x_1 = x_2 - x_1 = -1 - (-2) = 1 \\ &\Delta x_2 = x_3 - x_2 = 0 - (-1) = 1 \\ &\Delta x_3 = x_4 - x_3 = 1 - 0 = 1 \\ &\Delta x_4 = x_5 - x_4 = 2 - 1 = 1 \\ \end{aligned} \][/tex]
The differences in [tex]\( x \)[/tex]-values are [tex]\( 1 \)[/tex], [tex]\( 1 \)[/tex], [tex]\( 1 \)[/tex], and [tex]\( 1 \)[/tex].
3. Calculate the Ratio of Differences:
The slope [tex]\( m \)[/tex] of a linear function [tex]\( y = mx + b \)[/tex] can be determined by the constant ratio of [tex]\( \frac{\Delta y}{\Delta x} \)[/tex].
For this data:
[tex]\[ \frac{\Delta y_1}{\Delta x_1} = \frac{-2}{1} = -2 \][/tex]
[tex]\[ \frac{\Delta y_2}{\Delta x_2} = \frac{-2}{1} = -2 \][/tex]
[tex]\[ \frac{\Delta y_3}{\Delta x_3} = \frac{-2}{1} = -2 \][/tex]
[tex]\[ \frac{\Delta y_4}{\Delta x_4} = \frac{-2}{1} = -2 \][/tex]
The ratio of differences (or slope [tex]\( m \)[/tex]) is constant and equals [tex]\( -2 \)[/tex] for each pair. This means the data forms a straight line, indicating a linear relationship.
### Conclusion:
Since the differences in [tex]\( y \)[/tex]-values divided by differences in [tex]\( x \)[/tex]-values are constant, the function that matches the given data is Linear.
Thus, the answer is:
[tex]\[ \boxed{1} \][/tex]
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 8 \\ \hline -1 & 6 \\ \hline 0 & 4 \\ \hline 1 & 2 \\ \hline 2 & 0 \\ \hline \end{array} \][/tex]
### Step-by-Step Solution:
1. Observe the Differences in [tex]\( y \)[/tex]-Values:
First, calculate the differences between consecutive [tex]\( y \)[/tex]-values to check if they form a constant ratio.
[tex]\[ \Delta y = y_{i+1} - y_i \][/tex]
Let's calculate these:
[tex]\[ \begin{aligned} &\Delta y_1 = y_2 - y_1 = 6 - 8 = -2 \\ &\Delta y_2 = y_3 - y_2 = 4 - 6 = -2 \\ &\Delta y_3 = y_4 - y_3 = 2 - 4 = -2 \\ &\Delta y_4 = y_5 - y_4 = 0 - 2 = -2 \\ \end{aligned} \][/tex]
The differences in [tex]\( y \)[/tex]-values are [tex]\( -2 \)[/tex], [tex]\( -2 \)[/tex], [tex]\( -2 \)[/tex], and [tex]\( -2 \)[/tex].
2. Check the Differences in [tex]\( x \)[/tex]-Values:
Now, check the differences between consecutive [tex]\( x \)[/tex]-values.
[tex]\[ \Delta x = x_{i+1} - x_i \][/tex]
Since [tex]\( x \)[/tex]-values are evenly spaced [tex]\( (\Delta x = 1) \)[/tex]:
[tex]\[ \begin{aligned} &\Delta x_1 = x_2 - x_1 = -1 - (-2) = 1 \\ &\Delta x_2 = x_3 - x_2 = 0 - (-1) = 1 \\ &\Delta x_3 = x_4 - x_3 = 1 - 0 = 1 \\ &\Delta x_4 = x_5 - x_4 = 2 - 1 = 1 \\ \end{aligned} \][/tex]
The differences in [tex]\( x \)[/tex]-values are [tex]\( 1 \)[/tex], [tex]\( 1 \)[/tex], [tex]\( 1 \)[/tex], and [tex]\( 1 \)[/tex].
3. Calculate the Ratio of Differences:
The slope [tex]\( m \)[/tex] of a linear function [tex]\( y = mx + b \)[/tex] can be determined by the constant ratio of [tex]\( \frac{\Delta y}{\Delta x} \)[/tex].
For this data:
[tex]\[ \frac{\Delta y_1}{\Delta x_1} = \frac{-2}{1} = -2 \][/tex]
[tex]\[ \frac{\Delta y_2}{\Delta x_2} = \frac{-2}{1} = -2 \][/tex]
[tex]\[ \frac{\Delta y_3}{\Delta x_3} = \frac{-2}{1} = -2 \][/tex]
[tex]\[ \frac{\Delta y_4}{\Delta x_4} = \frac{-2}{1} = -2 \][/tex]
The ratio of differences (or slope [tex]\( m \)[/tex]) is constant and equals [tex]\( -2 \)[/tex] for each pair. This means the data forms a straight line, indicating a linear relationship.
### Conclusion:
Since the differences in [tex]\( y \)[/tex]-values divided by differences in [tex]\( x \)[/tex]-values are constant, the function that matches the given data is Linear.
Thus, the answer is:
[tex]\[ \boxed{1} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.