From everyday questions to specialized queries, IDNLearn.com has the answers. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
Let's solve the given system of linear equations and verify the solution using matrix methods:
The system of equations is:
[tex]\[ \begin{cases} 3x + 2y = 14 \\ 2x - 4y = 4 \end{cases} \][/tex]
### Step-by-Step Solution:
#### Part (a): Solve the System Using Substitution or Elimination Method
Choose the elimination method first to simplify both equations.
1. Equation 1:
[tex]\[ 3x + 2y = 14 \][/tex]
2. Equation 2:
[tex]\[ 2x - 4y = 4 \][/tex]
To eliminate one of the variables, let's manipulate the equations. We can achieve this by making the coefficients of [tex]\( y \)[/tex] in both equations the same.
Step 1: Multiply Equation 1 by 2:
[tex]\[ 2(3x + 2y) = 2(14) \\ 6x + 4y = 28 \][/tex]
Step 2: Write the modified system of equations:
[tex]\[ \begin{cases} 6x + 4y = 28 \\ 2x - 4y = 4 \end{cases} \][/tex]
Step 3: Add these two equations together to eliminate [tex]\( y \)[/tex]:
[tex]\[ (6x + 4y) + (2x - 4y) = 28 + 4 \\ 8x = 32 \][/tex]
Step 4: Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{32}{8} \\ x = 4 \][/tex]
Step 5: Substitute [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. Let's use Equation 1:
[tex]\[ 3(4) + 2y = 14 \\ 12 + 2y = 14 \\ 2y = 14 - 12 \\ 2y = 2 \\ y = 1 \][/tex]
So, the solution is [tex]\( x = 4 \)[/tex] and [tex]\( y = 1 \)[/tex].
#### Part (b): Verify the Solution Using Matrix Methods
The system of equations can be written in matrix form [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where [tex]\( A \)[/tex] is the coefficient matrix, [tex]\( \mathbf{x} \)[/tex] is the variable vector, and [tex]\( \mathbf{B} \)[/tex] is the constant vector.
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 2 & -4 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 14 \\ 4 \end{pmatrix} \][/tex]
To solve for [tex]\( \mathbf{x} \)[/tex], we need the inverse of matrix [tex]\( A \)[/tex] denoted as [tex]\( A^{-1} \)[/tex].
Given [tex]\( A^{-1} \)[/tex] and result of [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.25 & 0.125 \\ 0.125 & -0.1875 \end{pmatrix} \][/tex]
The solution vector [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} = \begin{pmatrix} 0.25 & 0.125 \\ 0.125 & -0.1875 \end{pmatrix} \begin{pmatrix} 14 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution from matrix method confirms:
[tex]\[ x = 4, \quad y = 1 \][/tex]
To verify, we can substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 1 \)[/tex] back into the original equations:
1. For [tex]\( 3x + 2y = 14 \)[/tex]:
[tex]\[ 3(4) + 2(1) = 12 + 2 = 14 \][/tex]
2. For [tex]\( 2x - 4y = 4 \)[/tex]:
[tex]\[ 2(4) - 4(1) = 8 - 4 = 4 \][/tex]
Both equations are satisfied, thereby confirming our solution:
[tex]\[ x = 4, \quad y = 1 \][/tex]
The system of equations is:
[tex]\[ \begin{cases} 3x + 2y = 14 \\ 2x - 4y = 4 \end{cases} \][/tex]
### Step-by-Step Solution:
#### Part (a): Solve the System Using Substitution or Elimination Method
Choose the elimination method first to simplify both equations.
1. Equation 1:
[tex]\[ 3x + 2y = 14 \][/tex]
2. Equation 2:
[tex]\[ 2x - 4y = 4 \][/tex]
To eliminate one of the variables, let's manipulate the equations. We can achieve this by making the coefficients of [tex]\( y \)[/tex] in both equations the same.
Step 1: Multiply Equation 1 by 2:
[tex]\[ 2(3x + 2y) = 2(14) \\ 6x + 4y = 28 \][/tex]
Step 2: Write the modified system of equations:
[tex]\[ \begin{cases} 6x + 4y = 28 \\ 2x - 4y = 4 \end{cases} \][/tex]
Step 3: Add these two equations together to eliminate [tex]\( y \)[/tex]:
[tex]\[ (6x + 4y) + (2x - 4y) = 28 + 4 \\ 8x = 32 \][/tex]
Step 4: Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{32}{8} \\ x = 4 \][/tex]
Step 5: Substitute [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]. Let's use Equation 1:
[tex]\[ 3(4) + 2y = 14 \\ 12 + 2y = 14 \\ 2y = 14 - 12 \\ 2y = 2 \\ y = 1 \][/tex]
So, the solution is [tex]\( x = 4 \)[/tex] and [tex]\( y = 1 \)[/tex].
#### Part (b): Verify the Solution Using Matrix Methods
The system of equations can be written in matrix form [tex]\( A \mathbf{x} = \mathbf{B} \)[/tex], where [tex]\( A \)[/tex] is the coefficient matrix, [tex]\( \mathbf{x} \)[/tex] is the variable vector, and [tex]\( \mathbf{B} \)[/tex] is the constant vector.
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 2 & -4 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 14 \\ 4 \end{pmatrix} \][/tex]
To solve for [tex]\( \mathbf{x} \)[/tex], we need the inverse of matrix [tex]\( A \)[/tex] denoted as [tex]\( A^{-1} \)[/tex].
Given [tex]\( A^{-1} \)[/tex] and result of [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.25 & 0.125 \\ 0.125 & -0.1875 \end{pmatrix} \][/tex]
The solution vector [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B} = \begin{pmatrix} 0.25 & 0.125 \\ 0.125 & -0.1875 \end{pmatrix} \begin{pmatrix} 14 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \][/tex]
Thus, the solution from matrix method confirms:
[tex]\[ x = 4, \quad y = 1 \][/tex]
To verify, we can substitute [tex]\( x = 4 \)[/tex] and [tex]\( y = 1 \)[/tex] back into the original equations:
1. For [tex]\( 3x + 2y = 14 \)[/tex]:
[tex]\[ 3(4) + 2(1) = 12 + 2 = 14 \][/tex]
2. For [tex]\( 2x - 4y = 4 \)[/tex]:
[tex]\[ 2(4) - 4(1) = 8 - 4 = 4 \][/tex]
Both equations are satisfied, thereby confirming our solution:
[tex]\[ x = 4, \quad y = 1 \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.