Discover how IDNLearn.com can help you find the answers you need quickly and easily. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To calculate the mass of the Moon, we can use the formula for gravitational force:
[tex]\[ g = \frac{G \cdot M}{R^2} \][/tex]
where:
- [tex]\( g \)[/tex] is the acceleration due to gravity at the surface of the Moon (given as [tex]\( 1.6 \, \text{m/s}^2 \)[/tex]),
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( M \)[/tex] is the mass of the Moon (what we want to find),
- [tex]\( R \)[/tex] is the radius of the Moon (given as [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex]).
Rearranging the formula to solve for the mass [tex]\( M \)[/tex]:
[tex]\[ M = \frac{g \cdot R^2}{G} \][/tex]
Substitute the given values into the formula:
- [tex]\( g = 1.6 \, \text{m/s}^2 \)[/tex]
- [tex]\( R = 1.74 \times 10^6 \, \text{m} \)[/tex]
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
[tex]\[ M = \frac{1.6 \, \text{m/s}^2 \cdot (1.74 \times 10^6 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}} \][/tex]
Calculating the term [tex]\( (1.74 \times 10^6)^2 \)[/tex]:
[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]
Now, plug this back into the main formula:
[tex]\[ M = \frac{1.6 \cdot 3.0276 \times 10^{12}}{6.67430 \times 10^{-11}} \][/tex]
Simplify the numerator:
[tex]\[ 1.6 \cdot 3.0276 = 4.84416 \][/tex]
Thus,
[tex]\[ M = \frac{4.84416 \times 10^{12}}{6.67430 \times 10^{-11}} \][/tex]
Divide:
[tex]\[ M = 7.257929670527247 \times 10^{22} \, \text{kg} \][/tex]
Hence, the mass of the Moon is approximately:
[tex]\[ M \approx 7.26 \times 10^{22} \, \text{kg} \][/tex]
This is close to the provided answer, which indicates that the mass of the Moon is [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex]. Discrepancies can arise from rounding differences at intermediate steps, but the calculations are generally consistent with the scientific accuracy for this context.
[tex]\[ g = \frac{G \cdot M}{R^2} \][/tex]
where:
- [tex]\( g \)[/tex] is the acceleration due to gravity at the surface of the Moon (given as [tex]\( 1.6 \, \text{m/s}^2 \)[/tex]),
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]),
- [tex]\( M \)[/tex] is the mass of the Moon (what we want to find),
- [tex]\( R \)[/tex] is the radius of the Moon (given as [tex]\( 1.74 \times 10^6 \, \text{m} \)[/tex]).
Rearranging the formula to solve for the mass [tex]\( M \)[/tex]:
[tex]\[ M = \frac{g \cdot R^2}{G} \][/tex]
Substitute the given values into the formula:
- [tex]\( g = 1.6 \, \text{m/s}^2 \)[/tex]
- [tex]\( R = 1.74 \times 10^6 \, \text{m} \)[/tex]
- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex]
[tex]\[ M = \frac{1.6 \, \text{m/s}^2 \cdot (1.74 \times 10^6 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}} \][/tex]
Calculating the term [tex]\( (1.74 \times 10^6)^2 \)[/tex]:
[tex]\[ (1.74 \times 10^6)^2 = 3.0276 \times 10^{12} \, \text{m}^2 \][/tex]
Now, plug this back into the main formula:
[tex]\[ M = \frac{1.6 \cdot 3.0276 \times 10^{12}}{6.67430 \times 10^{-11}} \][/tex]
Simplify the numerator:
[tex]\[ 1.6 \cdot 3.0276 = 4.84416 \][/tex]
Thus,
[tex]\[ M = \frac{4.84416 \times 10^{12}}{6.67430 \times 10^{-11}} \][/tex]
Divide:
[tex]\[ M = 7.257929670527247 \times 10^{22} \, \text{kg} \][/tex]
Hence, the mass of the Moon is approximately:
[tex]\[ M \approx 7.26 \times 10^{22} \, \text{kg} \][/tex]
This is close to the provided answer, which indicates that the mass of the Moon is [tex]\( 7.35 \times 10^{22} \, \text{kg} \)[/tex]. Discrepancies can arise from rounding differences at intermediate steps, but the calculations are generally consistent with the scientific accuracy for this context.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.