Get expert advice and community support for your questions on IDNLearn.com. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.
Sagot :
To determine the pH of a 0.56 M sulfurous acid ([tex]\(H_2SO_3\)[/tex]) solution, knowing that it is a diprotic acid, we need to follow these steps:
1. First Dissociation:
[tex]\[ H_2SO_3 \rightleftharpoons H^+ + HSO_3^- \][/tex]
The equilibrium constant for the first dissociation [tex]\(K_{a1}\)[/tex] is given as [tex]\(1.2 \times 10^{-2}\)[/tex].
2. We assume that the initial concentration of [tex]\(H_2SO_3\)[/tex] is 0.56 M, and let x be the concentration of [tex]\(H^+\)[/tex] ions produced by the first dissociation.
[tex]\[ Ka_1 = \frac{[H^+][HSO_3^-]}{[H_2SO_3]} \][/tex]
Given [tex]\(Ka_1 = 1.2 \times 10^{-2}\)[/tex] and initial concentration of [tex]\(H_2SO_3 = 0.56\)[/tex]:
[tex]\[ 1.2 \times 10^{-2} = \frac{x \cdot x}{0.56 - x} \approx \frac{x^2}{0.56} \][/tex]
Solving for x:
[tex]\[ x = \sqrt{1.2 \times 10^{-2} \times 0.56} = 0.0819756061276768 \][/tex]
This represents the hydrogen ion concentration ([tex]\([H^+]\)[/tex]) from the first dissociation.
3. Second Dissociation:
[tex]\[ HSO_3^- \rightleftharpoons H^+ + SO_3^{2-} \][/tex]
The equilibrium constant for the second dissociation [tex]\(K_{a2}\)[/tex] is given as [tex]\(6.2 \times 10^{-8}\)[/tex].
4. We now consider the contribution of H+ from the second dissociation. Let y be the concentration of [tex]\(H^+\)[/tex] ions produced by this step.
[tex]\[ Ka_2 = \frac{[H^+][SO_3^{2-}]}{[HSO_3^-]} \][/tex]
Given [tex]\(Ka_2 = 6.2 \times 10^{-8}\)[/tex] and the initial concentration of [tex]\(HSO_3^- = 0.0819756061276768\)[/tex]:
[tex]\[ 6.2 \times 10^{-8} = \frac{y \cdot y}{0.0819756061276768 + y} \approx \frac{y \cdot y}{0.0819756061276768} \][/tex]
Solving for y:
[tex]\[ y = \frac{6.2 \times 10^{-8} \times 0.0819756061276768}{0.0819756061276768 + 0.0819756061276768} = 5.40830518614672 \times 10^{-8} \][/tex]
5. Total Hydrogen Ion Concentration:
The total [tex]\( [H^+] \)[/tex] is the sum of the hydrogen ion concentrations from both dissociations.
[tex]\[ [H^+]_{total} = 0.0819756061276768 + 5.40830518614672 \times 10^{-8} = 0.0819756602107286 \][/tex]
6. Calculate the pH:
The pH is calculated using the formula:
[tex]\[ pH = -\log_{10} [H^+]_{total} \][/tex]
[tex]\[ pH = -\log_{10}(0.0819756602107286) = 2.50133290247808 / \log(10) = 2.50133290247808 \][/tex]
So, the pH of the 0.56 M sulfurous acid solution is approximately 2.50.
1. First Dissociation:
[tex]\[ H_2SO_3 \rightleftharpoons H^+ + HSO_3^- \][/tex]
The equilibrium constant for the first dissociation [tex]\(K_{a1}\)[/tex] is given as [tex]\(1.2 \times 10^{-2}\)[/tex].
2. We assume that the initial concentration of [tex]\(H_2SO_3\)[/tex] is 0.56 M, and let x be the concentration of [tex]\(H^+\)[/tex] ions produced by the first dissociation.
[tex]\[ Ka_1 = \frac{[H^+][HSO_3^-]}{[H_2SO_3]} \][/tex]
Given [tex]\(Ka_1 = 1.2 \times 10^{-2}\)[/tex] and initial concentration of [tex]\(H_2SO_3 = 0.56\)[/tex]:
[tex]\[ 1.2 \times 10^{-2} = \frac{x \cdot x}{0.56 - x} \approx \frac{x^2}{0.56} \][/tex]
Solving for x:
[tex]\[ x = \sqrt{1.2 \times 10^{-2} \times 0.56} = 0.0819756061276768 \][/tex]
This represents the hydrogen ion concentration ([tex]\([H^+]\)[/tex]) from the first dissociation.
3. Second Dissociation:
[tex]\[ HSO_3^- \rightleftharpoons H^+ + SO_3^{2-} \][/tex]
The equilibrium constant for the second dissociation [tex]\(K_{a2}\)[/tex] is given as [tex]\(6.2 \times 10^{-8}\)[/tex].
4. We now consider the contribution of H+ from the second dissociation. Let y be the concentration of [tex]\(H^+\)[/tex] ions produced by this step.
[tex]\[ Ka_2 = \frac{[H^+][SO_3^{2-}]}{[HSO_3^-]} \][/tex]
Given [tex]\(Ka_2 = 6.2 \times 10^{-8}\)[/tex] and the initial concentration of [tex]\(HSO_3^- = 0.0819756061276768\)[/tex]:
[tex]\[ 6.2 \times 10^{-8} = \frac{y \cdot y}{0.0819756061276768 + y} \approx \frac{y \cdot y}{0.0819756061276768} \][/tex]
Solving for y:
[tex]\[ y = \frac{6.2 \times 10^{-8} \times 0.0819756061276768}{0.0819756061276768 + 0.0819756061276768} = 5.40830518614672 \times 10^{-8} \][/tex]
5. Total Hydrogen Ion Concentration:
The total [tex]\( [H^+] \)[/tex] is the sum of the hydrogen ion concentrations from both dissociations.
[tex]\[ [H^+]_{total} = 0.0819756061276768 + 5.40830518614672 \times 10^{-8} = 0.0819756602107286 \][/tex]
6. Calculate the pH:
The pH is calculated using the formula:
[tex]\[ pH = -\log_{10} [H^+]_{total} \][/tex]
[tex]\[ pH = -\log_{10}(0.0819756602107286) = 2.50133290247808 / \log(10) = 2.50133290247808 \][/tex]
So, the pH of the 0.56 M sulfurous acid solution is approximately 2.50.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.