Get expert advice and community support for your questions on IDNLearn.com. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.
Sagot :
To evaluate the limit [tex]\(\lim_{x \to 0} \frac{x \cos(x) - \sin(x)}{4 x^3}\)[/tex], we can use series expansion (Maclaurin series) of the trigonometric functions [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex].
First, let's recall the Maclaurin series expansions for [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex] around [tex]\( x = 0 \)[/tex]:
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^6) \][/tex]
[tex]\[ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7) \][/tex]
Here, [tex]\(O(x^n)\)[/tex] represents the higher-order terms which become negligible as [tex]\(x\)[/tex] approaches 0.
Now let's consider the numerator [tex]\(x \cos(x) - \sin(x)\)[/tex]:
[tex]\[ x \cos(x) = x \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^6)\right) = x - \frac{x^3}{2} + \frac{x^5}{24} + O(x^7) \][/tex]
[tex]\[ \sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \][/tex]
Subtract these two series:
[tex]\[ x \cos(x) - \sin(x) = \left( x - \frac{x^3}{2} + \frac{x^5}{24} + O(x^7) \right) - \left( x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \right) \][/tex]
[tex]\[ = x - \frac{x^3}{2} + \frac{x^5}{24} - x + \frac{x^3}{6} - \frac{x^5}{120} + O(x^7) \][/tex]
[tex]\[ = \left( -\frac{x^3}{2} + \frac{x^3}{6} \right) + \left( \frac{x^5}{24} - \frac{x^5}{120} \right) + O(x^7) \][/tex]
[tex]\[ = -\frac{3x^3}{6} + \frac{x^3}{6} + O(x^5) \][/tex]
[tex]\[ = -\frac{2x^3}{6} + O(x^5) \][/tex]
[tex]\[ = -\frac{x^3}{3} + O(x^5) \][/tex]
Thus, for small values of [tex]\( x \)[/tex],
[tex]\[ x \cos(x) - \sin(x) \approx -\frac{x^3}{3} \][/tex]
Now we substitute this into the limit:
[tex]\[ \lim_{x \to 0} \frac{x \cos(x) - \sin(x)}{4 x^3} \][/tex]
[tex]\[ = \lim_{x \to 0} \frac{-\frac{x^3}{3}}{4 x^3} \][/tex]
[tex]\[ = \lim_{x \to 0} \frac{-x^3}{12 x^3} \][/tex]
[tex]\[ = \lim_{x \to 0} \frac{-1}{12} \][/tex]
Since [tex]\(x^3\)[/tex] terms cancel out, the limit simply becomes
[tex]\[ = -\frac{1}{12} \][/tex]
So, the correct answer is
(D) [tex]\(-\frac{1}{12}\)[/tex]
First, let's recall the Maclaurin series expansions for [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex] around [tex]\( x = 0 \)[/tex]:
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^6) \][/tex]
[tex]\[ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7) \][/tex]
Here, [tex]\(O(x^n)\)[/tex] represents the higher-order terms which become negligible as [tex]\(x\)[/tex] approaches 0.
Now let's consider the numerator [tex]\(x \cos(x) - \sin(x)\)[/tex]:
[tex]\[ x \cos(x) = x \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^6)\right) = x - \frac{x^3}{2} + \frac{x^5}{24} + O(x^7) \][/tex]
[tex]\[ \sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \][/tex]
Subtract these two series:
[tex]\[ x \cos(x) - \sin(x) = \left( x - \frac{x^3}{2} + \frac{x^5}{24} + O(x^7) \right) - \left( x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \right) \][/tex]
[tex]\[ = x - \frac{x^3}{2} + \frac{x^5}{24} - x + \frac{x^3}{6} - \frac{x^5}{120} + O(x^7) \][/tex]
[tex]\[ = \left( -\frac{x^3}{2} + \frac{x^3}{6} \right) + \left( \frac{x^5}{24} - \frac{x^5}{120} \right) + O(x^7) \][/tex]
[tex]\[ = -\frac{3x^3}{6} + \frac{x^3}{6} + O(x^5) \][/tex]
[tex]\[ = -\frac{2x^3}{6} + O(x^5) \][/tex]
[tex]\[ = -\frac{x^3}{3} + O(x^5) \][/tex]
Thus, for small values of [tex]\( x \)[/tex],
[tex]\[ x \cos(x) - \sin(x) \approx -\frac{x^3}{3} \][/tex]
Now we substitute this into the limit:
[tex]\[ \lim_{x \to 0} \frac{x \cos(x) - \sin(x)}{4 x^3} \][/tex]
[tex]\[ = \lim_{x \to 0} \frac{-\frac{x^3}{3}}{4 x^3} \][/tex]
[tex]\[ = \lim_{x \to 0} \frac{-x^3}{12 x^3} \][/tex]
[tex]\[ = \lim_{x \to 0} \frac{-1}{12} \][/tex]
Since [tex]\(x^3\)[/tex] terms cancel out, the limit simply becomes
[tex]\[ = -\frac{1}{12} \][/tex]
So, the correct answer is
(D) [tex]\(-\frac{1}{12}\)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.