IDNLearn.com provides a seamless experience for finding and sharing answers. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
Let's solve each part step-by-step.
### Part (a)
Given the matrices:
[tex]\[ A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} \][/tex]
#### (i) Calculate [tex]\( A + B \)[/tex]
We directly add the corresponding elements of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A + B = \begin{pmatrix} 1 + 1 & 1 + 2 & 2 + 1 \\ 1 + 2 & 2 + 1 & 1 + 1 \\ 3 + 1 & 2 - 1 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 2 \\ 4 & 1 & 4 \end{pmatrix} \][/tex]
So, [tex]\[ A + B = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 2 \\ 4 & 1 & 4 \end{pmatrix} \][/tex]
#### (ii) Calculate [tex]\( (AB)^x \)[/tex]
First, we need to find the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 2 + 2 \cdot 1) & (1 \cdot 2 + 1 \cdot 1 + 2 \cdot -1) & (1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2) \\ (1 \cdot 1 + 2 \cdot 2 + 1 \cdot 1) & (1 \cdot 2 + 2 \cdot 1 + 1 \cdot -1) & (1 \cdot 1 + 2 \cdot 1 + 1 \cdot 2) \\ (3 \cdot 1 + 2 \cdot 2 + 2 \cdot 1) & (3 \cdot 2 + 2 \cdot 1 + 2 \cdot -1) & (3 \cdot 1 + 2 \cdot 1 + 2 \cdot 2) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 1 + 2 + 2 & 2 + 1 - 2 & 1 + 1 + 4 \\ 1 + 4 + 1 & 2 + 2 - 1 & 1 + 2 + 2 \\ 3 + 4 + 2 & 6 + 2 - 2 & 3 + 2 + 4 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 5 & 1 & 6 \\ 6 & 3 & 5 \\ 9 & 6 & 9 \end{pmatrix} \][/tex]
The problem specifies the power [tex]\( x = 2 \)[/tex]. Thus, we calculate [tex]\( (AB)^2 \)[/tex] by squaring the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^2 = AB \cdot AB = \begin{pmatrix} 5 & 1 & 6 \\ 6 & 3 & 5 \\ 9 & 6 & 9 \end{pmatrix} \begin{pmatrix} 5 & 1 & 6 \\ 6 & 3 & 5 \\ 9 & 6 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} (5 \cdot 5 + 1 \cdot 6 + 6 \cdot 9) & (5 \cdot 1 + 1 \cdot 3 + 6 \cdot 6) & (5 \cdot 6 + 1 \cdot 5 + 6 \cdot 9) \\ (6 \cdot 5 + 3 \cdot 6 + 5 \cdot 9) & (6 \cdot 1 + 3 \cdot 3 + 5 \cdot 6) & (6 \cdot 6 + 3 \cdot 5 + 5 \cdot 9) \\ (9 \cdot 5 + 6 \cdot 6 + 9 \cdot 9) & (9 \cdot 1 + 6 \cdot 3 + 9 \cdot 6) & (9 \cdot 6 + 6 \cdot 5 + 9 \cdot 9) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} (25 + 6 + 54) & (5 + 3 + 36) & (30 + 5 + 54) \\ (30 + 18 + 45) & (6 + 9 + 30) & (36 + 15 + 45) \\ (45 + 36 + 81) & (9 + 18 + 54) & (54 + 30 + 81) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 85 & 44 & 89 \\ 93 & 45 & 96 \\ 162 & 81 & 165 \end{pmatrix} \][/tex]
So, [tex]\( (AB)^2 = \begin{pmatrix} 85 & 44 & 89 \\ 93 & 45 & 96 \\ 162 & 81 & 165 \end{pmatrix} \)[/tex]
### Part (b)
To solve the simultaneous equations using the inverse matrix method, we first write the system of equations as a matrix equation: [tex]\( C \mathbf{x} = \mathbf{d} \)[/tex], where:
[tex]\[ C = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 2 & 3 \\ 4 & 1 & 3 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \][/tex]
[tex]\[ \mathbf{d} = \begin{pmatrix} 13 \\ 13 \\ 13 \end{pmatrix} \][/tex]
We need to find [tex]\( C^{-1} \)[/tex], the inverse of matrix [tex]\( C \)[/tex]:
[tex]\[ C^{-1} = \begin{pmatrix} 0.23076923 & -0.30769231 & 0.15384615 \\ 0.69230769 & 0.07692308 & -0.53846154 \\ -0.53846154 & 0.38461538 & 0.30769231 \end{pmatrix} \][/tex]
The solution to the system of equations is given by:
[tex]\[ \mathbf{x} = C^{-1} \mathbf{d} \][/tex]
[tex]\[ \mathbf{x} = \begin{pmatrix} 0.23076923 & -0.30769231 & 0.15384615 \\ 0.69230769 & 0.07692308 & -0.53846154 \\ -0.53846154 & 0.38461538 & 0.30769231 \end{pmatrix} \begin{pmatrix} 13 \\ 13 \\ 13 \end{pmatrix} \][/tex]
Multiplying these matrices, we obtain:
[tex]\[ \mathbf{x} = \begin{pmatrix} (0.23076923 \cdot 13 + -0.30769231 \cdot 13 + 0.15384615 \cdot 13) \\ (0.69230769 \cdot 13 + 0.07692308 \cdot 13 + -0.53846154 \cdot 13) \\ (-0.53846154 \cdot 13 + 0.38461538 \cdot 13 + 0.30769231 \cdot 13) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \][/tex]
Therefore, the solutions to the system of equations are:
[tex]\[ x = 1, \; y = 3, \; z = 2 \][/tex]
### Part (a)
Given the matrices:
[tex]\[ A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} \][/tex]
#### (i) Calculate [tex]\( A + B \)[/tex]
We directly add the corresponding elements of matrices [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A + B = \begin{pmatrix} 1 + 1 & 1 + 2 & 2 + 1 \\ 1 + 2 & 2 + 1 & 1 + 1 \\ 3 + 1 & 2 - 1 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 2 \\ 4 & 1 & 4 \end{pmatrix} \][/tex]
So, [tex]\[ A + B = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 3 & 2 \\ 4 & 1 & 4 \end{pmatrix} \][/tex]
#### (ii) Calculate [tex]\( (AB)^x \)[/tex]
First, we need to find the product [tex]\(AB\)[/tex]:
[tex]\[ AB = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 3 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} (1 \cdot 1 + 1 \cdot 2 + 2 \cdot 1) & (1 \cdot 2 + 1 \cdot 1 + 2 \cdot -1) & (1 \cdot 1 + 1 \cdot 1 + 2 \cdot 2) \\ (1 \cdot 1 + 2 \cdot 2 + 1 \cdot 1) & (1 \cdot 2 + 2 \cdot 1 + 1 \cdot -1) & (1 \cdot 1 + 2 \cdot 1 + 1 \cdot 2) \\ (3 \cdot 1 + 2 \cdot 2 + 2 \cdot 1) & (3 \cdot 2 + 2 \cdot 1 + 2 \cdot -1) & (3 \cdot 1 + 2 \cdot 1 + 2 \cdot 2) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 1 + 2 + 2 & 2 + 1 - 2 & 1 + 1 + 4 \\ 1 + 4 + 1 & 2 + 2 - 1 & 1 + 2 + 2 \\ 3 + 4 + 2 & 6 + 2 - 2 & 3 + 2 + 4 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 5 & 1 & 6 \\ 6 & 3 & 5 \\ 9 & 6 & 9 \end{pmatrix} \][/tex]
The problem specifies the power [tex]\( x = 2 \)[/tex]. Thus, we calculate [tex]\( (AB)^2 \)[/tex] by squaring the matrix [tex]\(AB\)[/tex]:
[tex]\[ (AB)^2 = AB \cdot AB = \begin{pmatrix} 5 & 1 & 6 \\ 6 & 3 & 5 \\ 9 & 6 & 9 \end{pmatrix} \begin{pmatrix} 5 & 1 & 6 \\ 6 & 3 & 5 \\ 9 & 6 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} (5 \cdot 5 + 1 \cdot 6 + 6 \cdot 9) & (5 \cdot 1 + 1 \cdot 3 + 6 \cdot 6) & (5 \cdot 6 + 1 \cdot 5 + 6 \cdot 9) \\ (6 \cdot 5 + 3 \cdot 6 + 5 \cdot 9) & (6 \cdot 1 + 3 \cdot 3 + 5 \cdot 6) & (6 \cdot 6 + 3 \cdot 5 + 5 \cdot 9) \\ (9 \cdot 5 + 6 \cdot 6 + 9 \cdot 9) & (9 \cdot 1 + 6 \cdot 3 + 9 \cdot 6) & (9 \cdot 6 + 6 \cdot 5 + 9 \cdot 9) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} (25 + 6 + 54) & (5 + 3 + 36) & (30 + 5 + 54) \\ (30 + 18 + 45) & (6 + 9 + 30) & (36 + 15 + 45) \\ (45 + 36 + 81) & (9 + 18 + 54) & (54 + 30 + 81) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 85 & 44 & 89 \\ 93 & 45 & 96 \\ 162 & 81 & 165 \end{pmatrix} \][/tex]
So, [tex]\( (AB)^2 = \begin{pmatrix} 85 & 44 & 89 \\ 93 & 45 & 96 \\ 162 & 81 & 165 \end{pmatrix} \)[/tex]
### Part (b)
To solve the simultaneous equations using the inverse matrix method, we first write the system of equations as a matrix equation: [tex]\( C \mathbf{x} = \mathbf{d} \)[/tex], where:
[tex]\[ C = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 2 & 3 \\ 4 & 1 & 3 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \][/tex]
[tex]\[ \mathbf{d} = \begin{pmatrix} 13 \\ 13 \\ 13 \end{pmatrix} \][/tex]
We need to find [tex]\( C^{-1} \)[/tex], the inverse of matrix [tex]\( C \)[/tex]:
[tex]\[ C^{-1} = \begin{pmatrix} 0.23076923 & -0.30769231 & 0.15384615 \\ 0.69230769 & 0.07692308 & -0.53846154 \\ -0.53846154 & 0.38461538 & 0.30769231 \end{pmatrix} \][/tex]
The solution to the system of equations is given by:
[tex]\[ \mathbf{x} = C^{-1} \mathbf{d} \][/tex]
[tex]\[ \mathbf{x} = \begin{pmatrix} 0.23076923 & -0.30769231 & 0.15384615 \\ 0.69230769 & 0.07692308 & -0.53846154 \\ -0.53846154 & 0.38461538 & 0.30769231 \end{pmatrix} \begin{pmatrix} 13 \\ 13 \\ 13 \end{pmatrix} \][/tex]
Multiplying these matrices, we obtain:
[tex]\[ \mathbf{x} = \begin{pmatrix} (0.23076923 \cdot 13 + -0.30769231 \cdot 13 + 0.15384615 \cdot 13) \\ (0.69230769 \cdot 13 + 0.07692308 \cdot 13 + -0.53846154 \cdot 13) \\ (-0.53846154 \cdot 13 + 0.38461538 \cdot 13 + 0.30769231 \cdot 13) \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \][/tex]
Therefore, the solutions to the system of equations are:
[tex]\[ x = 1, \; y = 3, \; z = 2 \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.