IDNLearn.com: Where questions are met with accurate and insightful answers. Discover detailed and accurate answers to your questions from our knowledgeable and dedicated community members.
Sagot :
Let's solve each part of the question step-by-step.
### Part (a)
Given:
[tex]\[ \sin A = \frac{5}{17} \quad \text{and} \quad \cos B = \frac{4}{5} \][/tex]
(i) Find [tex]\(\sin(A+B)\)[/tex]
We use the sum of angles formula for sine:
[tex]\[ \sin(A+B) = \sin A \cos B + \cos A \sin B \][/tex]
First, we need to determine [tex]\(\cos A\)[/tex] and [tex]\(\sin B\)[/tex].
Since [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are acute angles, we can use the Pythagorean identity:
[tex]\[ \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{5}{17}\right)^2} = \sqrt{1 - \frac{25}{289}} = \sqrt{\frac{264}{289}} = \frac{\sqrt{264}}{17} \][/tex]
[tex]\[ \sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]
Now, substitute the values into the formula:
[tex]\[ \sin(A+B) = \frac{5}{17} \cdot \frac{4}{5} + \frac{\sqrt{264}}{17} \cdot \frac{3}{5} = \frac{20}{85} + \frac{3\sqrt{264}}{85} = \frac{20 + 3\sqrt{264}}{85} = \frac{20}{85} + \frac{66}{85} = \frac{86}{85} \approx 1.01 \][/tex]
(ii) Find [tex]\(\cos(A+B)\)[/tex]
We use the sum of angles formula for cosine:
[tex]\[ \cos(A+B) = \cos A \cos B - \sin A \sin B \][/tex]
Substitute the values again:
[tex]\[ \cos(A+B) = \frac{\sqrt{264}}{17} \cdot \frac{4}{5} - \frac{5}{17} \cdot \frac{3}{5} = \frac{4\sqrt{264}}{85} - \frac{15}{85} = \frac{4\sqrt{264} - 15}{85} \][/tex]
So, the results are:
[tex]\[ \sin(A+B) \approx 1.01 \][/tex]
[tex]\[ \cos(A+B) = \frac{4\sqrt{264} - 15}{85} \][/tex]
### Part (b)
Prove the identity:
[tex]\[ \frac{1}{1+\sin A} + \frac{1}{1-\sin A} = 2 \sec^2 A \][/tex]
Start with the left-hand side (LHS) and find a common denominator:
[tex]\[ LHS = \frac{1}{1+\sin A} + \frac{1}{1-\sin A} = \frac{(1-\sin A) + (1+\sin A)}{(1 + \sin A)(1 - \sin A)} \][/tex]
Simplify the numerator and denominator:
[tex]\[ LHS = \frac{2}{1 - \sin^2 A} \][/tex]
Use the Pythagorean identity [tex]\(\sin^2 A + \cos^2 A = 1\)[/tex]:
[tex]\[ 1 - \sin^2 A = \cos^2 A \Rightarrow LHS = \frac{2}{\cos^2 A} = 2 \sec^2 A \][/tex]
Hence, the identity is proven:
[tex]\[ \frac{1}{1+\sin A} + \frac{1}{1-\sin A} = 2 \sec^2 A \][/tex]
### Part (c)
Solve the equation:
[tex]\[ 2 \sin^2 \theta + 2 \cos \theta - 2 = 0 \][/tex]
Rewrite the equation:
[tex]\[ \sin^2 \theta + \cos \theta - 1 = 0 \][/tex]
Use the Pythagorean identity:
[tex]\[ 1 - \cos^2 \theta + \cos \theta - 1 = 0 \][/tex]
[tex]\[ 1 - \cos^2 \theta = 1 - \cos \theta \][/tex]
Let [tex]\(x = \cos \theta\)[/tex]:
[tex]\[ 1 - x^2 + x - 1 = 0 \][/tex]
[tex]\[ -x^2 + x = 0 \][/tex]
[tex]\[ x(x - 1) = 0 \][/tex]
Thus, [tex]\(x = 0\)[/tex] or [tex]\(x = 1\)[/tex]. Therefore:
[tex]\[ \cos \theta = 0 \quad \text{or} \quad \cos \theta = 1 \][/tex]
For [tex]\(\cos \theta = 0\)[/tex]:
[tex]\[ \theta = 90^\circ \quad \text{or} \quad \theta = 270^\circ \][/tex]
For [tex]\(\cos \theta = 1\)[/tex]:
[tex]\[ \theta = 0^\circ \quad \text{or} \quad \theta = 360^\circ \][/tex]
So the solutions are:
[tex]\[ \theta = 0^\circ, 90^\circ, 270^\circ, 360^\circ \][/tex]
### Summary of Final Solutions
(a)
(i) [tex]\(\sin(A+B) \approx 1.01\)[/tex]
(ii) [tex]\(\cos(A+B) = \frac{4\sqrt{264} - 15}{85}\)[/tex]
(b) Identity proved: [tex]\(\frac{1}{1+\sin A} + \frac{1}{1-\sin A} = 2 \sec^2 A\)[/tex]
(c) The solutions to the equation are:
[tex]\[ \theta = 0^\circ, 90^\circ, 270^\circ, 360^\circ \][/tex]
### Part (a)
Given:
[tex]\[ \sin A = \frac{5}{17} \quad \text{and} \quad \cos B = \frac{4}{5} \][/tex]
(i) Find [tex]\(\sin(A+B)\)[/tex]
We use the sum of angles formula for sine:
[tex]\[ \sin(A+B) = \sin A \cos B + \cos A \sin B \][/tex]
First, we need to determine [tex]\(\cos A\)[/tex] and [tex]\(\sin B\)[/tex].
Since [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are acute angles, we can use the Pythagorean identity:
[tex]\[ \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{5}{17}\right)^2} = \sqrt{1 - \frac{25}{289}} = \sqrt{\frac{264}{289}} = \frac{\sqrt{264}}{17} \][/tex]
[tex]\[ \sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]
Now, substitute the values into the formula:
[tex]\[ \sin(A+B) = \frac{5}{17} \cdot \frac{4}{5} + \frac{\sqrt{264}}{17} \cdot \frac{3}{5} = \frac{20}{85} + \frac{3\sqrt{264}}{85} = \frac{20 + 3\sqrt{264}}{85} = \frac{20}{85} + \frac{66}{85} = \frac{86}{85} \approx 1.01 \][/tex]
(ii) Find [tex]\(\cos(A+B)\)[/tex]
We use the sum of angles formula for cosine:
[tex]\[ \cos(A+B) = \cos A \cos B - \sin A \sin B \][/tex]
Substitute the values again:
[tex]\[ \cos(A+B) = \frac{\sqrt{264}}{17} \cdot \frac{4}{5} - \frac{5}{17} \cdot \frac{3}{5} = \frac{4\sqrt{264}}{85} - \frac{15}{85} = \frac{4\sqrt{264} - 15}{85} \][/tex]
So, the results are:
[tex]\[ \sin(A+B) \approx 1.01 \][/tex]
[tex]\[ \cos(A+B) = \frac{4\sqrt{264} - 15}{85} \][/tex]
### Part (b)
Prove the identity:
[tex]\[ \frac{1}{1+\sin A} + \frac{1}{1-\sin A} = 2 \sec^2 A \][/tex]
Start with the left-hand side (LHS) and find a common denominator:
[tex]\[ LHS = \frac{1}{1+\sin A} + \frac{1}{1-\sin A} = \frac{(1-\sin A) + (1+\sin A)}{(1 + \sin A)(1 - \sin A)} \][/tex]
Simplify the numerator and denominator:
[tex]\[ LHS = \frac{2}{1 - \sin^2 A} \][/tex]
Use the Pythagorean identity [tex]\(\sin^2 A + \cos^2 A = 1\)[/tex]:
[tex]\[ 1 - \sin^2 A = \cos^2 A \Rightarrow LHS = \frac{2}{\cos^2 A} = 2 \sec^2 A \][/tex]
Hence, the identity is proven:
[tex]\[ \frac{1}{1+\sin A} + \frac{1}{1-\sin A} = 2 \sec^2 A \][/tex]
### Part (c)
Solve the equation:
[tex]\[ 2 \sin^2 \theta + 2 \cos \theta - 2 = 0 \][/tex]
Rewrite the equation:
[tex]\[ \sin^2 \theta + \cos \theta - 1 = 0 \][/tex]
Use the Pythagorean identity:
[tex]\[ 1 - \cos^2 \theta + \cos \theta - 1 = 0 \][/tex]
[tex]\[ 1 - \cos^2 \theta = 1 - \cos \theta \][/tex]
Let [tex]\(x = \cos \theta\)[/tex]:
[tex]\[ 1 - x^2 + x - 1 = 0 \][/tex]
[tex]\[ -x^2 + x = 0 \][/tex]
[tex]\[ x(x - 1) = 0 \][/tex]
Thus, [tex]\(x = 0\)[/tex] or [tex]\(x = 1\)[/tex]. Therefore:
[tex]\[ \cos \theta = 0 \quad \text{or} \quad \cos \theta = 1 \][/tex]
For [tex]\(\cos \theta = 0\)[/tex]:
[tex]\[ \theta = 90^\circ \quad \text{or} \quad \theta = 270^\circ \][/tex]
For [tex]\(\cos \theta = 1\)[/tex]:
[tex]\[ \theta = 0^\circ \quad \text{or} \quad \theta = 360^\circ \][/tex]
So the solutions are:
[tex]\[ \theta = 0^\circ, 90^\circ, 270^\circ, 360^\circ \][/tex]
### Summary of Final Solutions
(a)
(i) [tex]\(\sin(A+B) \approx 1.01\)[/tex]
(ii) [tex]\(\cos(A+B) = \frac{4\sqrt{264} - 15}{85}\)[/tex]
(b) Identity proved: [tex]\(\frac{1}{1+\sin A} + \frac{1}{1-\sin A} = 2 \sec^2 A\)[/tex]
(c) The solutions to the equation are:
[tex]\[ \theta = 0^\circ, 90^\circ, 270^\circ, 360^\circ \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.