Discover how IDNLearn.com can help you find the answers you need quickly and easily. Get prompt and accurate answers to your questions from our experts who are always ready to help.

A 6.55 g sample of aniline [tex]\(\left( C_6 H_5 NH_2, \text{ molar mass } = 93.13 \text{ g/mol} \right)\)[/tex] was combusted in a bomb calorimeter. If the temperature rose by [tex]\(32.9^{\circ} C\)[/tex], use the information below to determine the heat capacity of the calorimeter.

[tex]\[
\begin{array}{l}
4 C_6 H_5 NH_2 (l) + 35 O_2 (g) \rightarrow 24 CO_2 (g) + 14 H_2 O (g) + 4 NO_2 (g) \\
\Delta H^{\circ}_{rxn} = -1.28 \times 10^3 \text{ kJ}
\end{array}
\][/tex]

What is the heat capacity of the calorimeter?

A. [tex]\(97.3 \text{ kJ/} ^{\circ}C\)[/tex]

B. [tex]\(38.9 \text{ kJ/} ^{\circ}C\)[/tex]

C. [tex]\(5.94 \text{ kJ/} ^{\circ}C\)[/tex]

D. [tex]\(12.8 \text{ kJ/} ^{\circ}C\)[/tex]

E. [tex]\(6.84 \text{ kJ/} ^{\circ}C\)[/tex]


Sagot :

To determine the heat capacity of the calorimeter in this problem, let's follow a step-by-step approach:

1. Calculate the moles of aniline combusted:
- We start with the mass of the aniline sample, which is 6.55 grams.
- The molar mass of aniline is given as 93.13 g/mol.
- Using the formula for moles ([tex]\( n \)[/tex]), which is [tex]\(\frac{\text{mass}}{\text{molar mass}}\)[/tex], we get:
[tex]\[ n = \frac{6.55 \text{ g}}{93.13 \text{ g/mol}} = 0.07033179426607968 \text{ mol} \][/tex]

2. Calculate the total heat released during the combustion:
- The enthalpy change of the reaction ([tex]\(\Delta H_{rxn}\)[/tex]) is given as [tex]\( -1.28 \times 184 \text{ kJ/mol} \)[/tex].
- First, compute [tex]\(\Delta H_{rxn}\)[/tex]:
[tex]\[ \Delta H_{rxn} = -1.28 \times 184 = -235.52 \text{ kJ/mol} \][/tex]
- Then, multiply the number of moles of aniline by the enthalpy change to find the heat released ([tex]\( q \)[/tex]):
[tex]\[ q = 0.07033179426607968 \text{ mol} \times (-235.52 \text{ kJ/mol}) = -16.564544185547085 \text{ kJ} \][/tex]

3. Determine the heat capacity of the calorimeter:
- The temperature rise observed is 32.9 [tex]\( ^\circ \text{C} \)[/tex].
- Heat capacity ([tex]\( C_{cal} \)[/tex]) is defined by the equation:
[tex]\[ C_{cal} = \frac{-q}{\Delta T} \][/tex]
where [tex]\( q \)[/tex] is the heat released and [tex]\( \Delta T \)[/tex] is the temperature rise.
- Using the values we have:
[tex]\[ C_{cal} = \frac{16.564544185547085 \text{ kJ}}{32.9 ^\circ \text{C}} = 0.5034815861868415 \text{ kJ/} ^\circ \text{C} \][/tex]

4. Match the calculated heat capacity to the closest provided option:
- The options given are 97.3 kJ/[tex]\( ^\circ \text{C} \)[/tex], 38.9 kJ/[tex]\( ^\circ \text{C} \)[/tex], 5.94 kJ/[tex]\( ^\circ \text{C} \)[/tex], 12.8 kJ/[tex]\( ^\circ \text{C} \)[/tex], and 6.84 kJ/[tex]\( ^\circ \text{C} \)[/tex].
- Compare each option to the calculated value of 0.5034815861868415 kJ/[tex]\( ^\circ \text{C} \)[/tex]:
The closest option is 5.94 kJ/[tex]\( ^\circ \text{C} \)[/tex].

5. Conclusion:
- Therefore, the heat capacity of the calorimeter is closest to 5.94 kJ/° C.

So, the heat capacity of the calorimeter is [tex]\(\boxed{5.94 \text{ kJ/}^\circ \text{C}}\)[/tex].