IDNLearn.com: Where curiosity meets clarity and questions find their answers. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
Sure, let's go through the steps to calculate the net force on sphere [tex]\(X\)[/tex] due to the forces from sphere [tex]\(Y\)[/tex] and sphere [tex]\(Z\)[/tex].
Given:
- Charge of sphere [tex]\(X\)[/tex] ([tex]\(q_X\)[/tex]) [tex]\(= 5 \times 10^{-6} \, C\)[/tex]
- Charge of sphere [tex]\(Y\)[/tex] ([tex]\(q_Y\)[/tex]) [tex]\(= 7 \times 10^{-6} \, C\)[/tex]
- Charge of sphere [tex]\(Z\)[/tex] ([tex]\(q_Z\)[/tex]) [tex]\(= -4 \times 10^{-6} \, C\)[/tex]
- Distance between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] ([tex]\(r_{XY}\)[/tex]) [tex]\(= 0.02 \, m\)[/tex]
- Distance between [tex]\(X\)[/tex] and [tex]\(Z\)[/tex] ([tex]\(r_{XZ}\)[/tex]) [tex]\(= 0.03 \, m\)[/tex]
- Coulomb's constant ([tex]\(k\)[/tex]) [tex]\(= 8.99 \times 10^9 \, N \cdot m^2/C^2\)[/tex]
1. Calculate the force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Y\)[/tex]:
Using Coulomb's law:
[tex]\[ F_{XY} = k \frac{q_X \cdot q_Y}{r_{XY}^2} \][/tex]
Substituting the given values:
[tex]\[ F_{XY} = 8.99 \times 10^9 \frac{(5 \times 10^{-6}) \cdot (7 \times 10^{-6})}{(0.02)^2} \][/tex]
Upon evaluation:
[tex]\[ F_{XY} = 786.625 \, N \][/tex]
2. Calculate the force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Z\)[/tex]:
Using Coulomb's law:
[tex]\[ F_{XZ} = k \frac{q_X \cdot q_Z}{r_{XZ}^2} \][/tex]
Substituting the given values:
[tex]\[ F_{XZ} = 8.99 \times 10^9 \frac{(5 \times 10^{-6}) \cdot (-4 \times 10^{-6})}{(0.03)^2} \][/tex]
Upon evaluation:
[tex]\[ F_{XZ} = -199.778 \, N \][/tex]
Here, the negative sign indicates that the force is attractive (since the charges are of opposite signs).
3. Determine the resultant force on sphere [tex]\(X\)[/tex]:
Since sphere [tex]\(Z\)[/tex] is placed at right angles to sphere [tex]\(X\)[/tex], the forces [tex]\(F_{XY}\)[/tex] and [tex]\(F_{XZ}\)[/tex] are perpendicular to each other. Therefore, we use the Pythagorean theorem to find the magnitude of the net force:
[tex]\[ F_{net} = \sqrt{F_{XY}^2 + F_{XZ}^2} \][/tex]
Substituting the calculated values:
[tex]\[ F_{net} = \sqrt{786.625^2 + (-199.778)^2} \][/tex]
Upon evaluation:
[tex]\[ F_{net} = 811.597 \, N \][/tex]
Thus, the magnitudes of the forces are:
- Force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Y\)[/tex] ([tex]\(F_{XY}\)[/tex]): [tex]\(786.625 \, N\)[/tex]
- Force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Z\)[/tex] ([tex]\(F_{XZ}\)[/tex]): [tex]\(-199.778 \, N\)[/tex] (indicating attraction)
- Net force on sphere [tex]\(X\)[/tex] due to sphere [tex]\(Y\)[/tex] and sphere [tex]\(Z\)[/tex] ([tex]\(F_{net}\)[/tex]): [tex]\(811.597 \, N\)[/tex]
Given:
- Charge of sphere [tex]\(X\)[/tex] ([tex]\(q_X\)[/tex]) [tex]\(= 5 \times 10^{-6} \, C\)[/tex]
- Charge of sphere [tex]\(Y\)[/tex] ([tex]\(q_Y\)[/tex]) [tex]\(= 7 \times 10^{-6} \, C\)[/tex]
- Charge of sphere [tex]\(Z\)[/tex] ([tex]\(q_Z\)[/tex]) [tex]\(= -4 \times 10^{-6} \, C\)[/tex]
- Distance between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] ([tex]\(r_{XY}\)[/tex]) [tex]\(= 0.02 \, m\)[/tex]
- Distance between [tex]\(X\)[/tex] and [tex]\(Z\)[/tex] ([tex]\(r_{XZ}\)[/tex]) [tex]\(= 0.03 \, m\)[/tex]
- Coulomb's constant ([tex]\(k\)[/tex]) [tex]\(= 8.99 \times 10^9 \, N \cdot m^2/C^2\)[/tex]
1. Calculate the force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Y\)[/tex]:
Using Coulomb's law:
[tex]\[ F_{XY} = k \frac{q_X \cdot q_Y}{r_{XY}^2} \][/tex]
Substituting the given values:
[tex]\[ F_{XY} = 8.99 \times 10^9 \frac{(5 \times 10^{-6}) \cdot (7 \times 10^{-6})}{(0.02)^2} \][/tex]
Upon evaluation:
[tex]\[ F_{XY} = 786.625 \, N \][/tex]
2. Calculate the force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Z\)[/tex]:
Using Coulomb's law:
[tex]\[ F_{XZ} = k \frac{q_X \cdot q_Z}{r_{XZ}^2} \][/tex]
Substituting the given values:
[tex]\[ F_{XZ} = 8.99 \times 10^9 \frac{(5 \times 10^{-6}) \cdot (-4 \times 10^{-6})}{(0.03)^2} \][/tex]
Upon evaluation:
[tex]\[ F_{XZ} = -199.778 \, N \][/tex]
Here, the negative sign indicates that the force is attractive (since the charges are of opposite signs).
3. Determine the resultant force on sphere [tex]\(X\)[/tex]:
Since sphere [tex]\(Z\)[/tex] is placed at right angles to sphere [tex]\(X\)[/tex], the forces [tex]\(F_{XY}\)[/tex] and [tex]\(F_{XZ}\)[/tex] are perpendicular to each other. Therefore, we use the Pythagorean theorem to find the magnitude of the net force:
[tex]\[ F_{net} = \sqrt{F_{XY}^2 + F_{XZ}^2} \][/tex]
Substituting the calculated values:
[tex]\[ F_{net} = \sqrt{786.625^2 + (-199.778)^2} \][/tex]
Upon evaluation:
[tex]\[ F_{net} = 811.597 \, N \][/tex]
Thus, the magnitudes of the forces are:
- Force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Y\)[/tex] ([tex]\(F_{XY}\)[/tex]): [tex]\(786.625 \, N\)[/tex]
- Force between sphere [tex]\(X\)[/tex] and sphere [tex]\(Z\)[/tex] ([tex]\(F_{XZ}\)[/tex]): [tex]\(-199.778 \, N\)[/tex] (indicating attraction)
- Net force on sphere [tex]\(X\)[/tex] due to sphere [tex]\(Y\)[/tex] and sphere [tex]\(Z\)[/tex] ([tex]\(F_{net}\)[/tex]): [tex]\(811.597 \, N\)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.