Get the answers you need from a community of experts on IDNLearn.com. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To determine the standard enthalpy change, [tex]\(\Delta H^{\circ} \mathrm{rxn}\)[/tex], for the reaction:
[tex]\[ 4 \mathrm{NO}(g) + 2 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}_2(g) \][/tex]
we can use the given enthalpies of the following reactions:
[tex]\[ \begin{array}{ll} \mathrm{(1)\quad} \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow 2 \mathrm{NO}(g) & \Delta H^{\circ} \mathrm{rxn\_1} = +183 \text{ kJ} \\ \mathrm{(2)\quad} \frac{1}{2} \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow \mathrm{NO}_2(g) & \Delta H^{\circ} \mathrm{rxn\_2} = +33 \text{ kJ} \end{array} \][/tex]
### Step-by-Step Solution:
1. Scale the first reaction to match the target reaction for NO:
[tex]\[ \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow 2 \mathrm{NO}(g) \quad (\Delta H^{\circ} = 183 \text{ kJ}) \][/tex]
We need [tex]\(4 \mathrm{NO}\)[/tex], so we multiply the entire reaction by 2:
[tex]\[ 2 \mathrm{N}_2(g) + 2 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}(g) \quad (\Delta H^{\circ} = 2 \times 183 \text{ kJ} = 366 \text{ kJ}) \][/tex]
Thus, the scaled enthalpy change for this reaction is [tex]\( 366 \text{ kJ} \)[/tex].
2. Scale the second reaction to match the target reaction for NO₂:
[tex]\[ \frac{1}{2} \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow \mathrm{NO}_2(g) \quad (\Delta H^{\circ} = 33 \text{ kJ}) \][/tex]
We need [tex]\(4 \mathrm{NO}_2\)[/tex], so we multiply the entire reaction by 4:
[tex]\[ 2 \mathrm{N}_2(g) + 4 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}_2(g) \quad (\Delta H^{\circ} = 4 \times 33 \text{ kJ} = 132 \text{ kJ}) \][/tex]
Thus, the scaled enthalpy change for this reaction is [tex]\( 132 \text{ kJ} \)[/tex].
3. Combine the scaled reactions:
Subtract the enthalpy of the NO formation reaction from the NO₂ formation reaction:
[tex]\[ \Delta H^{\circ} \mathrm{rxn} = 132 \text{ kJ} - 366 \text{ kJ} = -234 \text{ kJ} \][/tex]
Therefore, the standard enthalpy change, [tex]\(\Delta H^{\circ} \mathrm{rxn}\)[/tex], for the reaction
[tex]\[ 4 \mathrm{NO}(g) + 2 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}_2(g) \][/tex]
is [tex]\(-234 \text{ kJ}\)[/tex].
[tex]\[ 4 \mathrm{NO}(g) + 2 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}_2(g) \][/tex]
we can use the given enthalpies of the following reactions:
[tex]\[ \begin{array}{ll} \mathrm{(1)\quad} \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow 2 \mathrm{NO}(g) & \Delta H^{\circ} \mathrm{rxn\_1} = +183 \text{ kJ} \\ \mathrm{(2)\quad} \frac{1}{2} \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow \mathrm{NO}_2(g) & \Delta H^{\circ} \mathrm{rxn\_2} = +33 \text{ kJ} \end{array} \][/tex]
### Step-by-Step Solution:
1. Scale the first reaction to match the target reaction for NO:
[tex]\[ \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow 2 \mathrm{NO}(g) \quad (\Delta H^{\circ} = 183 \text{ kJ}) \][/tex]
We need [tex]\(4 \mathrm{NO}\)[/tex], so we multiply the entire reaction by 2:
[tex]\[ 2 \mathrm{N}_2(g) + 2 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}(g) \quad (\Delta H^{\circ} = 2 \times 183 \text{ kJ} = 366 \text{ kJ}) \][/tex]
Thus, the scaled enthalpy change for this reaction is [tex]\( 366 \text{ kJ} \)[/tex].
2. Scale the second reaction to match the target reaction for NO₂:
[tex]\[ \frac{1}{2} \mathrm{N}_2(g) + \mathrm{O}_2(g) \rightarrow \mathrm{NO}_2(g) \quad (\Delta H^{\circ} = 33 \text{ kJ}) \][/tex]
We need [tex]\(4 \mathrm{NO}_2\)[/tex], so we multiply the entire reaction by 4:
[tex]\[ 2 \mathrm{N}_2(g) + 4 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}_2(g) \quad (\Delta H^{\circ} = 4 \times 33 \text{ kJ} = 132 \text{ kJ}) \][/tex]
Thus, the scaled enthalpy change for this reaction is [tex]\( 132 \text{ kJ} \)[/tex].
3. Combine the scaled reactions:
Subtract the enthalpy of the NO formation reaction from the NO₂ formation reaction:
[tex]\[ \Delta H^{\circ} \mathrm{rxn} = 132 \text{ kJ} - 366 \text{ kJ} = -234 \text{ kJ} \][/tex]
Therefore, the standard enthalpy change, [tex]\(\Delta H^{\circ} \mathrm{rxn}\)[/tex], for the reaction
[tex]\[ 4 \mathrm{NO}(g) + 2 \mathrm{O}_2(g) \rightarrow 4 \mathrm{NO}_2(g) \][/tex]
is [tex]\(-234 \text{ kJ}\)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.