Find solutions to your problems with the expert advice available on IDNLearn.com. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
To determine the hydroxide ion concentration [tex]\([\text{OH}^-]\)[/tex] in a 1.40 M solution of pyridine (C[tex]\(_5\)[/tex]H[tex]\(_5\)[/tex]N), which has a base dissociation constant (K[tex]\(_\text{b}\)[/tex]) of 1.70 [tex]\(\times\)[/tex] 10[tex]\(^{-9}\)[/tex], we can follow these step-by-step calculations:
1. Write the balanced equation for the dissociation of pyridine in water:
[tex]\[ \text{C}_5\text{H}_5\text{N} + \text{H}_2\text{O} \rightleftharpoons \text{C}_5\text{H}_5\text{NH}^+ + \text{OH}^- \][/tex]
2. Set up the expression for the base dissociation constant (K[tex]\(_\text{b}\)[/tex]):
[tex]\[ K_\text{b} = \frac{[\text{C}_5\text{H}_5\text{NH}^+][\text{OH}^-]}{[\text{C}_5\text{H}_5\text{N}]} \][/tex]
3. Define the initial concentrations and changes at equilibrium:
- Initially: [tex]\([\text{C}_5\text{H}_5\text{N}] = 1.40\)[/tex] M, [tex]\([\text{C}_5\text{H}_5\text{NH}^+] = [\text{OH}^-] = 0\)[/tex] M.
- At equilibrium: [tex]\([\text{C}_5\text{H}_5\text{NH}^+] = x\)[/tex] M, [tex]\([\text{OH}^-] = x\)[/tex] M, and [tex]\([\text{C}_5\text{H}_5\text{N}] = 1.40 - x\)[/tex] M.
4. Substitute these values into the K[tex]\(_\text{b}\)[/tex] expression:
[tex]\[ K_\text{b} = \frac{(x)(x)}{1.40 - x} \][/tex]
5. Since [tex]\(K_\text{b}\)[/tex] is very small, we can assume that [tex]\(x\)[/tex] (the amount of dissociation) is small compared to the initial concentration, so [tex]\(1.40 - x \approx 1.40\)[/tex]:
[tex]\[ K_\text{b} \approx \frac{x^2}{1.40} \][/tex]
6. Rearrange the equation to solve for [tex]\(x\)[/tex]:
[tex]\[ x^2 = K_\text{b} \times 1.40 \][/tex]
7. Insert the value of [tex]\(K_\text{b}\)[/tex]:
[tex]\[ x^2 = (1.70 \times 10^{-9}) \times 1.40 \][/tex]
8. Calculate [tex]\(x\)[/tex] (which represents the [tex]\([\text{OH}^-]\)[/tex] concentration):
[tex]\[ x = \sqrt{(1.70 \times 10^{-9}) \times 1.40} \][/tex]
9. Thus, the concentration of hydroxide ions [tex]\([\text{OH}^-]\)[/tex] is found to be approximately:
[tex]\[ [\text{OH}^-] \approx 4.88 \times 10^{-5} \text{ M} \][/tex]
Therefore, the [tex]\([\text{OH}^-]\)[/tex] concentration in a 1.40 M solution of pyridine is approximately [tex]\(4.88 \times 10^{-5}\)[/tex] M.
1. Write the balanced equation for the dissociation of pyridine in water:
[tex]\[ \text{C}_5\text{H}_5\text{N} + \text{H}_2\text{O} \rightleftharpoons \text{C}_5\text{H}_5\text{NH}^+ + \text{OH}^- \][/tex]
2. Set up the expression for the base dissociation constant (K[tex]\(_\text{b}\)[/tex]):
[tex]\[ K_\text{b} = \frac{[\text{C}_5\text{H}_5\text{NH}^+][\text{OH}^-]}{[\text{C}_5\text{H}_5\text{N}]} \][/tex]
3. Define the initial concentrations and changes at equilibrium:
- Initially: [tex]\([\text{C}_5\text{H}_5\text{N}] = 1.40\)[/tex] M, [tex]\([\text{C}_5\text{H}_5\text{NH}^+] = [\text{OH}^-] = 0\)[/tex] M.
- At equilibrium: [tex]\([\text{C}_5\text{H}_5\text{NH}^+] = x\)[/tex] M, [tex]\([\text{OH}^-] = x\)[/tex] M, and [tex]\([\text{C}_5\text{H}_5\text{N}] = 1.40 - x\)[/tex] M.
4. Substitute these values into the K[tex]\(_\text{b}\)[/tex] expression:
[tex]\[ K_\text{b} = \frac{(x)(x)}{1.40 - x} \][/tex]
5. Since [tex]\(K_\text{b}\)[/tex] is very small, we can assume that [tex]\(x\)[/tex] (the amount of dissociation) is small compared to the initial concentration, so [tex]\(1.40 - x \approx 1.40\)[/tex]:
[tex]\[ K_\text{b} \approx \frac{x^2}{1.40} \][/tex]
6. Rearrange the equation to solve for [tex]\(x\)[/tex]:
[tex]\[ x^2 = K_\text{b} \times 1.40 \][/tex]
7. Insert the value of [tex]\(K_\text{b}\)[/tex]:
[tex]\[ x^2 = (1.70 \times 10^{-9}) \times 1.40 \][/tex]
8. Calculate [tex]\(x\)[/tex] (which represents the [tex]\([\text{OH}^-]\)[/tex] concentration):
[tex]\[ x = \sqrt{(1.70 \times 10^{-9}) \times 1.40} \][/tex]
9. Thus, the concentration of hydroxide ions [tex]\([\text{OH}^-]\)[/tex] is found to be approximately:
[tex]\[ [\text{OH}^-] \approx 4.88 \times 10^{-5} \text{ M} \][/tex]
Therefore, the [tex]\([\text{OH}^-]\)[/tex] concentration in a 1.40 M solution of pyridine is approximately [tex]\(4.88 \times 10^{-5}\)[/tex] M.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.