Explore a diverse range of topics and get expert answers on IDNLearn.com. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.
Sagot :
To determine the energy change for an electron transitioning from the [tex]\( n=2 \)[/tex] level to the [tex]\( n=5 \)[/tex] level in a hydrogen atom, we can use the energy levels of the hydrogen atom, which are given by the formula:
[tex]\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \][/tex]
However, in this situation, all the specific values and constants are given directly in joules.
The energy of an electron in a particular quantum level [tex]\( n \)[/tex] in hydrogen is:
[tex]\[ E_n = -2.18 \times 10^{-19} \text{ J} / n^2 \][/tex]
First, we will calculate the initial energy level when the electron is at [tex]\( n=2 \)[/tex]:
[tex]\[ E_{\text{initial}} = \frac{-2.18 \times 10^{-19} \text{ J}}{2^2} \][/tex]
[tex]\[ E_{\text{initial}} = \frac{-2.18 \times 10^{-19} \text{ J}}{4} \][/tex]
[tex]\[ E_{\text{initial}} = -5.45 \times 10^{-20} \text{ J} \][/tex]
Next, we calculate the final energy level when the electron is at [tex]\( n=5 \)[/tex]:
[tex]\[ E_{\text{final}} = \frac{-2.18 \times 10^{-19} \text{ J}}{5^2} \][/tex]
[tex]\[ E_{\text{final}} = \frac{-2.18 \times 10^{-19} \text{ J}}{25} \][/tex]
[tex]\[ E_{\text{final}} = -8.72 \times 10^{-21} \text{ J} \][/tex]
The energy change [tex]\( \Delta E \)[/tex] associated with the transition from [tex]\( n=2 \)[/tex] to [tex]\( n=5 \)[/tex] is the difference between the final energy and the initial energy:
[tex]\[ \Delta E = E_{\text{final}} - E_{\text{initial}} \][/tex]
[tex]\[ \Delta E = -8.72 \times 10^{-21} \text{ J} - (-5.45 \times 10^{-20} \text{ J}) \][/tex]
[tex]\[ \Delta E = -8.72 \times 10^{-21} \text{ J} + 5.45 \times 10^{-20} \text{ J} \][/tex]
[tex]\[ \Delta E = 4.578 \times 10^{-20} \text{ J} \][/tex]
So, the energy change associated with the transition from [tex]\( n=2 \)[/tex] to [tex]\( n=5 \)[/tex] in the hydrogen atom is:
[tex]\[ 4.58 \times 10^{-20} \text{ J} \][/tex]
Therefore, the correct answer is:
[tex]\[ 4.58 \times 10^{-20} \text{ J} \][/tex]
[tex]\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \][/tex]
However, in this situation, all the specific values and constants are given directly in joules.
The energy of an electron in a particular quantum level [tex]\( n \)[/tex] in hydrogen is:
[tex]\[ E_n = -2.18 \times 10^{-19} \text{ J} / n^2 \][/tex]
First, we will calculate the initial energy level when the electron is at [tex]\( n=2 \)[/tex]:
[tex]\[ E_{\text{initial}} = \frac{-2.18 \times 10^{-19} \text{ J}}{2^2} \][/tex]
[tex]\[ E_{\text{initial}} = \frac{-2.18 \times 10^{-19} \text{ J}}{4} \][/tex]
[tex]\[ E_{\text{initial}} = -5.45 \times 10^{-20} \text{ J} \][/tex]
Next, we calculate the final energy level when the electron is at [tex]\( n=5 \)[/tex]:
[tex]\[ E_{\text{final}} = \frac{-2.18 \times 10^{-19} \text{ J}}{5^2} \][/tex]
[tex]\[ E_{\text{final}} = \frac{-2.18 \times 10^{-19} \text{ J}}{25} \][/tex]
[tex]\[ E_{\text{final}} = -8.72 \times 10^{-21} \text{ J} \][/tex]
The energy change [tex]\( \Delta E \)[/tex] associated with the transition from [tex]\( n=2 \)[/tex] to [tex]\( n=5 \)[/tex] is the difference between the final energy and the initial energy:
[tex]\[ \Delta E = E_{\text{final}} - E_{\text{initial}} \][/tex]
[tex]\[ \Delta E = -8.72 \times 10^{-21} \text{ J} - (-5.45 \times 10^{-20} \text{ J}) \][/tex]
[tex]\[ \Delta E = -8.72 \times 10^{-21} \text{ J} + 5.45 \times 10^{-20} \text{ J} \][/tex]
[tex]\[ \Delta E = 4.578 \times 10^{-20} \text{ J} \][/tex]
So, the energy change associated with the transition from [tex]\( n=2 \)[/tex] to [tex]\( n=5 \)[/tex] in the hydrogen atom is:
[tex]\[ 4.58 \times 10^{-20} \text{ J} \][/tex]
Therefore, the correct answer is:
[tex]\[ 4.58 \times 10^{-20} \text{ J} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.