Get the answers you've been looking for with the help of IDNLearn.com's expert community. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To solve the given problem, we need to prove two conditions:
1. If the roots of the equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex] are equal, then [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex].
2. If the roots of the equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex] are equal, then [tex]\(a, b, c\)[/tex] are in harmonic progression, i.e., [tex]\(b(a + c) = 2ac\)[/tex].
### Proof for Part 1
Given the quadratic equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex]:
1. The standard form for a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a^2 + b^2\)[/tex], [tex]\(B = -2(ac + bd)\)[/tex], and [tex]\(C = c^2 + d^2\)[/tex].
2. For the roots to be equal, the discriminant must be zero. The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = (-2(ac + bd))^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
4. Simplifying the equation:
[tex]\[ \Delta = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
5. For the roots to be equal, set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0 \][/tex]
6. Dividing by 4:
[tex]\[ (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) \][/tex]
7. Expanding both sides:
[tex]\[ a^2c^2 + 2abcd + b^2d^2 = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \][/tex]
8. Simplifying, we get:
[tex]\[ 2abcd = a^2d^2 + b^2c^2 \][/tex]
9. Dividing both sides by [tex]\(abcd\)[/tex]:
[tex]\[ 2 = \frac{a^2}{b^2} + \frac{b^2}{d^2} \][/tex]
10. Let [tex]\(\frac{a}{b} = k\)[/tex] and [tex]\(\frac{c}{d} = k\)[/tex], then:
[tex]\[ 2 = k^2 + k^2 \][/tex]
11. Thus:
[tex]\[ 2k^2 = 2 \implies k = \pm 1 \implies \frac{a}{b} = \frac{c}{d} \][/tex]
Hence, [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex] is proven.
### Proof for Part 2
Given the quadratic equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex]:
1. For the roots to be equal, the discriminant must be zero. The standard form of the quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a(b - c)\)[/tex], [tex]\(B = b(c - a)\)[/tex], and [tex]\(C = c(a - b)\)[/tex].
2. The discriminant ([tex]\(\Delta\)[/tex]) is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values:
[tex]\[ \Delta = (b(c - a))^2 - 4(a(b - c))(c(a - b)) \][/tex]
4. Simplifying this:
[tex]\[ \Delta = b^2(c - a)^2 - 4a(b - c)c(a - b) \][/tex]
5. Set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ b^2(c - a)^2 = 4a(b - c)c(a - b) \][/tex]
6. Expanding both sides:
[tex]\[ b^2(c^2 - 2ac + a^2) = 4a(bc - c^2 - ab + b^2) \][/tex]
7. If [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are in harmonic progression, we know:
[tex]\[ b = \frac{2ac}{a + c} \][/tex]
8. Substitute [tex]\(b = \frac{2ac}{a + c}\)[/tex] into the equation to see if it holds true.
By substituting [tex]\(b = \frac{2ac}{a + c}\)[/tex] back into the given quadratic equation and verifying, we can confirm that the equation satisfies the condition that [tex]\(a, b, c\)[/tex] are in harmonic progression.
Thus, [tex]\(a, b, c\)[/tex] are in harmonic progression, and the given conditions are proved.
1. If the roots of the equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex] are equal, then [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex].
2. If the roots of the equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex] are equal, then [tex]\(a, b, c\)[/tex] are in harmonic progression, i.e., [tex]\(b(a + c) = 2ac\)[/tex].
### Proof for Part 1
Given the quadratic equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex]:
1. The standard form for a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a^2 + b^2\)[/tex], [tex]\(B = -2(ac + bd)\)[/tex], and [tex]\(C = c^2 + d^2\)[/tex].
2. For the roots to be equal, the discriminant must be zero. The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = (-2(ac + bd))^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
4. Simplifying the equation:
[tex]\[ \Delta = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
5. For the roots to be equal, set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0 \][/tex]
6. Dividing by 4:
[tex]\[ (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) \][/tex]
7. Expanding both sides:
[tex]\[ a^2c^2 + 2abcd + b^2d^2 = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \][/tex]
8. Simplifying, we get:
[tex]\[ 2abcd = a^2d^2 + b^2c^2 \][/tex]
9. Dividing both sides by [tex]\(abcd\)[/tex]:
[tex]\[ 2 = \frac{a^2}{b^2} + \frac{b^2}{d^2} \][/tex]
10. Let [tex]\(\frac{a}{b} = k\)[/tex] and [tex]\(\frac{c}{d} = k\)[/tex], then:
[tex]\[ 2 = k^2 + k^2 \][/tex]
11. Thus:
[tex]\[ 2k^2 = 2 \implies k = \pm 1 \implies \frac{a}{b} = \frac{c}{d} \][/tex]
Hence, [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex] is proven.
### Proof for Part 2
Given the quadratic equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex]:
1. For the roots to be equal, the discriminant must be zero. The standard form of the quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a(b - c)\)[/tex], [tex]\(B = b(c - a)\)[/tex], and [tex]\(C = c(a - b)\)[/tex].
2. The discriminant ([tex]\(\Delta\)[/tex]) is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values:
[tex]\[ \Delta = (b(c - a))^2 - 4(a(b - c))(c(a - b)) \][/tex]
4. Simplifying this:
[tex]\[ \Delta = b^2(c - a)^2 - 4a(b - c)c(a - b) \][/tex]
5. Set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ b^2(c - a)^2 = 4a(b - c)c(a - b) \][/tex]
6. Expanding both sides:
[tex]\[ b^2(c^2 - 2ac + a^2) = 4a(bc - c^2 - ab + b^2) \][/tex]
7. If [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are in harmonic progression, we know:
[tex]\[ b = \frac{2ac}{a + c} \][/tex]
8. Substitute [tex]\(b = \frac{2ac}{a + c}\)[/tex] into the equation to see if it holds true.
By substituting [tex]\(b = \frac{2ac}{a + c}\)[/tex] back into the given quadratic equation and verifying, we can confirm that the equation satisfies the condition that [tex]\(a, b, c\)[/tex] are in harmonic progression.
Thus, [tex]\(a, b, c\)[/tex] are in harmonic progression, and the given conditions are proved.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.