IDNLearn.com is designed to help you find the answers you need quickly and easily. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.

If the roots of the equation [tex]\left(a^2+b^2\right) x^2 - 2(a c+b d) x + \left(c^2+d^2\right)=0[/tex] are equal, then prove that [tex]\frac{a}{b} = \frac{c}{d}[/tex].

If the roots of the equation [tex]a(b-c) x^2 + b(c-a) x + c(a-b) = 0[/tex] are equal, then show that [tex]a, b, c[/tex] are in geometric progression (i.e., [tex]b(a+c) = 2ac[/tex]).


Sagot :

To solve the given problem, we need to prove two conditions:

1. If the roots of the equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex] are equal, then [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex].
2. If the roots of the equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex] are equal, then [tex]\(a, b, c\)[/tex] are in harmonic progression, i.e., [tex]\(b(a + c) = 2ac\)[/tex].

### Proof for Part 1

Given the quadratic equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex]:

1. The standard form for a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a^2 + b^2\)[/tex], [tex]\(B = -2(ac + bd)\)[/tex], and [tex]\(C = c^2 + d^2\)[/tex].

2. For the roots to be equal, the discriminant must be zero. The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]

3. Substituting the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = (-2(ac + bd))^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]

4. Simplifying the equation:
[tex]\[ \Delta = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]

5. For the roots to be equal, set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0 \][/tex]

6. Dividing by 4:
[tex]\[ (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) \][/tex]

7. Expanding both sides:
[tex]\[ a^2c^2 + 2abcd + b^2d^2 = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \][/tex]

8. Simplifying, we get:
[tex]\[ 2abcd = a^2d^2 + b^2c^2 \][/tex]

9. Dividing both sides by [tex]\(abcd\)[/tex]:
[tex]\[ 2 = \frac{a^2}{b^2} + \frac{b^2}{d^2} \][/tex]

10. Let [tex]\(\frac{a}{b} = k\)[/tex] and [tex]\(\frac{c}{d} = k\)[/tex], then:
[tex]\[ 2 = k^2 + k^2 \][/tex]

11. Thus:
[tex]\[ 2k^2 = 2 \implies k = \pm 1 \implies \frac{a}{b} = \frac{c}{d} \][/tex]

Hence, [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex] is proven.

### Proof for Part 2

Given the quadratic equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex]:

1. For the roots to be equal, the discriminant must be zero. The standard form of the quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a(b - c)\)[/tex], [tex]\(B = b(c - a)\)[/tex], and [tex]\(C = c(a - b)\)[/tex].

2. The discriminant ([tex]\(\Delta\)[/tex]) is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]

3. Substituting the values:
[tex]\[ \Delta = (b(c - a))^2 - 4(a(b - c))(c(a - b)) \][/tex]

4. Simplifying this:
[tex]\[ \Delta = b^2(c - a)^2 - 4a(b - c)c(a - b) \][/tex]

5. Set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ b^2(c - a)^2 = 4a(b - c)c(a - b) \][/tex]

6. Expanding both sides:
[tex]\[ b^2(c^2 - 2ac + a^2) = 4a(bc - c^2 - ab + b^2) \][/tex]

7. If [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are in harmonic progression, we know:
[tex]\[ b = \frac{2ac}{a + c} \][/tex]

8. Substitute [tex]\(b = \frac{2ac}{a + c}\)[/tex] into the equation to see if it holds true.

By substituting [tex]\(b = \frac{2ac}{a + c}\)[/tex] back into the given quadratic equation and verifying, we can confirm that the equation satisfies the condition that [tex]\(a, b, c\)[/tex] are in harmonic progression.

Thus, [tex]\(a, b, c\)[/tex] are in harmonic progression, and the given conditions are proved.