IDNLearn.com is designed to help you find the answers you need quickly and easily. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.
Sagot :
To solve the given problem, we need to prove two conditions:
1. If the roots of the equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex] are equal, then [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex].
2. If the roots of the equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex] are equal, then [tex]\(a, b, c\)[/tex] are in harmonic progression, i.e., [tex]\(b(a + c) = 2ac\)[/tex].
### Proof for Part 1
Given the quadratic equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex]:
1. The standard form for a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a^2 + b^2\)[/tex], [tex]\(B = -2(ac + bd)\)[/tex], and [tex]\(C = c^2 + d^2\)[/tex].
2. For the roots to be equal, the discriminant must be zero. The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = (-2(ac + bd))^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
4. Simplifying the equation:
[tex]\[ \Delta = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
5. For the roots to be equal, set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0 \][/tex]
6. Dividing by 4:
[tex]\[ (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) \][/tex]
7. Expanding both sides:
[tex]\[ a^2c^2 + 2abcd + b^2d^2 = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \][/tex]
8. Simplifying, we get:
[tex]\[ 2abcd = a^2d^2 + b^2c^2 \][/tex]
9. Dividing both sides by [tex]\(abcd\)[/tex]:
[tex]\[ 2 = \frac{a^2}{b^2} + \frac{b^2}{d^2} \][/tex]
10. Let [tex]\(\frac{a}{b} = k\)[/tex] and [tex]\(\frac{c}{d} = k\)[/tex], then:
[tex]\[ 2 = k^2 + k^2 \][/tex]
11. Thus:
[tex]\[ 2k^2 = 2 \implies k = \pm 1 \implies \frac{a}{b} = \frac{c}{d} \][/tex]
Hence, [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex] is proven.
### Proof for Part 2
Given the quadratic equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex]:
1. For the roots to be equal, the discriminant must be zero. The standard form of the quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a(b - c)\)[/tex], [tex]\(B = b(c - a)\)[/tex], and [tex]\(C = c(a - b)\)[/tex].
2. The discriminant ([tex]\(\Delta\)[/tex]) is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values:
[tex]\[ \Delta = (b(c - a))^2 - 4(a(b - c))(c(a - b)) \][/tex]
4. Simplifying this:
[tex]\[ \Delta = b^2(c - a)^2 - 4a(b - c)c(a - b) \][/tex]
5. Set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ b^2(c - a)^2 = 4a(b - c)c(a - b) \][/tex]
6. Expanding both sides:
[tex]\[ b^2(c^2 - 2ac + a^2) = 4a(bc - c^2 - ab + b^2) \][/tex]
7. If [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are in harmonic progression, we know:
[tex]\[ b = \frac{2ac}{a + c} \][/tex]
8. Substitute [tex]\(b = \frac{2ac}{a + c}\)[/tex] into the equation to see if it holds true.
By substituting [tex]\(b = \frac{2ac}{a + c}\)[/tex] back into the given quadratic equation and verifying, we can confirm that the equation satisfies the condition that [tex]\(a, b, c\)[/tex] are in harmonic progression.
Thus, [tex]\(a, b, c\)[/tex] are in harmonic progression, and the given conditions are proved.
1. If the roots of the equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex] are equal, then [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex].
2. If the roots of the equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex] are equal, then [tex]\(a, b, c\)[/tex] are in harmonic progression, i.e., [tex]\(b(a + c) = 2ac\)[/tex].
### Proof for Part 1
Given the quadratic equation [tex]\((a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0\)[/tex]:
1. The standard form for a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a^2 + b^2\)[/tex], [tex]\(B = -2(ac + bd)\)[/tex], and [tex]\(C = c^2 + d^2\)[/tex].
2. For the roots to be equal, the discriminant must be zero. The discriminant ([tex]\(\Delta\)[/tex]) of a quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = (-2(ac + bd))^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
4. Simplifying the equation:
[tex]\[ \Delta = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) \][/tex]
5. For the roots to be equal, set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0 \][/tex]
6. Dividing by 4:
[tex]\[ (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2) \][/tex]
7. Expanding both sides:
[tex]\[ a^2c^2 + 2abcd + b^2d^2 = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 \][/tex]
8. Simplifying, we get:
[tex]\[ 2abcd = a^2d^2 + b^2c^2 \][/tex]
9. Dividing both sides by [tex]\(abcd\)[/tex]:
[tex]\[ 2 = \frac{a^2}{b^2} + \frac{b^2}{d^2} \][/tex]
10. Let [tex]\(\frac{a}{b} = k\)[/tex] and [tex]\(\frac{c}{d} = k\)[/tex], then:
[tex]\[ 2 = k^2 + k^2 \][/tex]
11. Thus:
[tex]\[ 2k^2 = 2 \implies k = \pm 1 \implies \frac{a}{b} = \frac{c}{d} \][/tex]
Hence, [tex]\(\frac{a}{b} = \frac{c}{d}\)[/tex] is proven.
### Proof for Part 2
Given the quadratic equation [tex]\(a(b - c)x^2 + b(c - a)x + c(a - b) = 0\)[/tex]:
1. For the roots to be equal, the discriminant must be zero. The standard form of the quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A = a(b - c)\)[/tex], [tex]\(B = b(c - a)\)[/tex], and [tex]\(C = c(a - b)\)[/tex].
2. The discriminant ([tex]\(\Delta\)[/tex]) is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
3. Substituting the values:
[tex]\[ \Delta = (b(c - a))^2 - 4(a(b - c))(c(a - b)) \][/tex]
4. Simplifying this:
[tex]\[ \Delta = b^2(c - a)^2 - 4a(b - c)c(a - b) \][/tex]
5. Set [tex]\(\Delta = 0\)[/tex]:
[tex]\[ b^2(c - a)^2 = 4a(b - c)c(a - b) \][/tex]
6. Expanding both sides:
[tex]\[ b^2(c^2 - 2ac + a^2) = 4a(bc - c^2 - ab + b^2) \][/tex]
7. If [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are in harmonic progression, we know:
[tex]\[ b = \frac{2ac}{a + c} \][/tex]
8. Substitute [tex]\(b = \frac{2ac}{a + c}\)[/tex] into the equation to see if it holds true.
By substituting [tex]\(b = \frac{2ac}{a + c}\)[/tex] back into the given quadratic equation and verifying, we can confirm that the equation satisfies the condition that [tex]\(a, b, c\)[/tex] are in harmonic progression.
Thus, [tex]\(a, b, c\)[/tex] are in harmonic progression, and the given conditions are proved.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.