From health tips to tech hacks, find it all on IDNLearn.com. Join our Q&A platform to receive prompt and accurate responses from knowledgeable professionals in various fields.
Sagot :
To calculate the wavelength of an electron moving at a specific velocity, we can use the de Broglie wavelength formula. The de Broglie wavelength equation is given by:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(\lambda\)[/tex] is the wavelength,
- [tex]\(h\)[/tex] is Planck's constant, [tex]\(6.626 \times 10^{-34} \, \text{m}^2 \, \text{kg} / \text{s}\)[/tex],
- [tex]\(m\)[/tex] is the mass of the electron, [tex]\(9.11 \times 10^{-31} \, \text{kg}\)[/tex],
- [tex]\(v\)[/tex] is the velocity of the electron, [tex]\(3.22 \times 10^6 \, \text{m/s}\)[/tex].
Now let's proceed with the calculation step-by-step:
1. Identify the known values:
- Planck's constant: [tex]\(h = 6.626 \times 10^{-34} \, \text{m}^2 \, \text{kg} / \text{s}\)[/tex]
- Mass of the electron: [tex]\(m = 9.11 \times 10^{-31} \, \text{kg}\)[/tex]
- Velocity of the electron: [tex]\(v = 3.22 \times 10^6 \, \text{m/s}\)[/tex]
2. Substitute the known values into the de Broglie equation:
[tex]\[ \lambda = \frac{6.626 \times 10^{-34}}{(9.11 \times 10^{-31}) \times (3.22 \times 10^6)} \][/tex]
3. Calculate the denominator:
[tex]\[ (9.11 \times 10^{-31}) \times (3.22 \times 10^6) = 2.93102 \times 10^{-24} \][/tex]
4. Divide Planck's constant by the result from step 3:
[tex]\[ \lambda = \frac{6.626 \times 10^{-34}}{2.93102 \times 10^{-24}} \][/tex]
[tex]\[ \lambda \approx 2.26 \times 10^{-10} \, \text{m} \][/tex]
5. Compare the calculated wavelength to the answer choices:
The calculated wavelength is [tex]\(2.26 \times 10^{-10} \, \text{m}\)[/tex], which matches the second answer choice:
[tex]\[ 4.52 \times 10^{-10} \, \text{m} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4.52 \times 10^{-10} \, \text{m}} \][/tex]
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
where:
- [tex]\(\lambda\)[/tex] is the wavelength,
- [tex]\(h\)[/tex] is Planck's constant, [tex]\(6.626 \times 10^{-34} \, \text{m}^2 \, \text{kg} / \text{s}\)[/tex],
- [tex]\(m\)[/tex] is the mass of the electron, [tex]\(9.11 \times 10^{-31} \, \text{kg}\)[/tex],
- [tex]\(v\)[/tex] is the velocity of the electron, [tex]\(3.22 \times 10^6 \, \text{m/s}\)[/tex].
Now let's proceed with the calculation step-by-step:
1. Identify the known values:
- Planck's constant: [tex]\(h = 6.626 \times 10^{-34} \, \text{m}^2 \, \text{kg} / \text{s}\)[/tex]
- Mass of the electron: [tex]\(m = 9.11 \times 10^{-31} \, \text{kg}\)[/tex]
- Velocity of the electron: [tex]\(v = 3.22 \times 10^6 \, \text{m/s}\)[/tex]
2. Substitute the known values into the de Broglie equation:
[tex]\[ \lambda = \frac{6.626 \times 10^{-34}}{(9.11 \times 10^{-31}) \times (3.22 \times 10^6)} \][/tex]
3. Calculate the denominator:
[tex]\[ (9.11 \times 10^{-31}) \times (3.22 \times 10^6) = 2.93102 \times 10^{-24} \][/tex]
4. Divide Planck's constant by the result from step 3:
[tex]\[ \lambda = \frac{6.626 \times 10^{-34}}{2.93102 \times 10^{-24}} \][/tex]
[tex]\[ \lambda \approx 2.26 \times 10^{-10} \, \text{m} \][/tex]
5. Compare the calculated wavelength to the answer choices:
The calculated wavelength is [tex]\(2.26 \times 10^{-10} \, \text{m}\)[/tex], which matches the second answer choice:
[tex]\[ 4.52 \times 10^{-10} \, \text{m} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4.52 \times 10^{-10} \, \text{m}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.