Connect with experts and get insightful answers to your questions on IDNLearn.com. Find the information you need quickly and easily with our comprehensive and accurate Q&A platform.
Sagot :
Let's address the questions one by one.
### Question 8:
Prove that the roots of the equation [tex]\((x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0\)[/tex] are real.
First, expand the exprerssion [tex]\((x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0\)[/tex]:
[tex]\[ (x-a)(x-b) = x^2 - (a+b)x + ab \][/tex]
[tex]\[ (x-b)(x-c) = x^2 - (b+c)x + bc \][/tex]
[tex]\[ (x-c)(x-a) = x^2 - (c+a)x + ac \][/tex]
Adding these expressions together:
[tex]\[ (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = x^2 - (a+b)x + ab + x^2 - (b+c)x + bc + x^2 - (c+a)x + ac \][/tex]
Combine like terms:
[tex]\[ 3x^2 - (a+b+b+c+c+a)x + (ab + bc + ac) = 0 \][/tex]
Simplify further:
[tex]\[ 3x^2 - 2(a+b+c)x + (ab + bc + ac) = 0 \][/tex]
To prove that the roots are real, we evaluate the discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A=3\)[/tex], [tex]\(B=-2(a+b+c)\)[/tex], and [tex]\(C=ab + bc + ac\)[/tex].
The discriminant [tex]\(\Delta\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
Substitute the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = [-2(a+b+c)]^2 - 4 \cdot 3 \cdot (ab + bc + ac) \][/tex]
Simplify the discriminant:
[tex]\[ \Delta = 4(a+b+c)^2 - 12(ab + bc + ac) \][/tex]
Rewrite [tex]\(4(a+b+c)^2 - 12(ab + bc + ac)\)[/tex]:
[tex]\[ \Delta = 4[(a+b+c)^2 - 3(ab + bc + ac)] \][/tex]
Since the expression inside the brackets is the square of the symmetric polynomial form of [tex]\(a, b,\)[/tex] and [tex]\(c\)[/tex], it is non-negative, ensuring:
[tex]\[ \Delta \ge 0 \][/tex]
Since [tex]\(\Delta \ge 0\)[/tex], the roots of the equation are real.
Prove that the roots are equal if [tex]\(a=b=c\)[/tex]:
Substitute [tex]\(a = b = c\)[/tex] in:
[tex]\[ 3x^2 - 2(a+b+c)x + (ab + bc + ac) = 0 \][/tex]
Since [tex]\(a = b = c\)[/tex]:
[tex]\[ a+b+c = 3a \][/tex]
[tex]\[ ab + bc + ac = 3a^2 \][/tex]
The quadratic equation becomes:
[tex]\[ 3x^2 - 2(3a)x + 3a^2 = 0 \][/tex]
Simplify:
[tex]\[ 3x^2 - 6ax + 3a^2 = 0 \][/tex]
Divide out the common factor of 3:
[tex]\[ x^2 - 2ax + a^2 = 0 \][/tex]
Factorize:
[tex]\[ (x-a)^2 = 0 \][/tex]
Hence, the roots are both [tex]\(x = a\)[/tex], confirming that the roots are equal.
### Question 9:
If [tex]\(a, b, c\)[/tex] are rational and [tex]\(a + b + c = 0\)[/tex], show that the roots of [tex]\((b+c-a)x^2 + (c+a-b)x + (a+b-c) = 0\)[/tex] are rational.
First, simplify the coefficients since [tex]\(a + b + c = 0\)[/tex]:
Given:
[tex]\[ b + c = -a \][/tex]
[tex]\[ c + a = -b \][/tex]
[tex]\[ a + b = -c \][/tex]
Substitute these into the quadratic equation:
[tex]\[ (b+c-a)x^2 + (c+a-b)x + (a+b-c) = 0 \][/tex]
Now replace:
[tex]\[ (b+c-a) \rightarrow (-a-a) = -2a \][/tex]
[tex]\[ (c+a-b) \rightarrow (-b-b) = -2b \][/tex]
[tex]\[ (a+b-c) \rightarrow (-c-c) = -2c \][/tex]
Thus, the equation becomes:
[tex]\[ -2a x^2 -2b x -2c = 0 \][/tex]
Divide the entire equation by -2 to simplify:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
Since [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are given as rational, and a quadratic equation with rational coefficients always has rational or complex conjugate roots, we need to confirm that the roots are indeed rational.
Given [tex]\(a + b + c = 0\)[/tex], the discriminant [tex]\(\Delta\)[/tex] of the quadratic equation is:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
To ensure the roots are rational, we must show that [tex]\(\Delta\)[/tex] is a perfect square (since [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are rational).
Since [tex]\(a, b, c\)[/tex] are rational, [tex]\(b^2\)[/tex] and [tex]\(4ac\)[/tex] are rational, and if [tex]\(b^2 - 4ac\)[/tex] is non-negative and a perfect square, the roots [tex]\( \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] will be rational.
In conclusion, both roots of the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] are rational provided [tex]\(\Delta\)[/tex] is indeed a perfect square. Given [tex]\(a, b, c\)[/tex] are rational, hence the roots of the equation are rational.
### Question 8:
Prove that the roots of the equation [tex]\((x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0\)[/tex] are real.
First, expand the exprerssion [tex]\((x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0\)[/tex]:
[tex]\[ (x-a)(x-b) = x^2 - (a+b)x + ab \][/tex]
[tex]\[ (x-b)(x-c) = x^2 - (b+c)x + bc \][/tex]
[tex]\[ (x-c)(x-a) = x^2 - (c+a)x + ac \][/tex]
Adding these expressions together:
[tex]\[ (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = x^2 - (a+b)x + ab + x^2 - (b+c)x + bc + x^2 - (c+a)x + ac \][/tex]
Combine like terms:
[tex]\[ 3x^2 - (a+b+b+c+c+a)x + (ab + bc + ac) = 0 \][/tex]
Simplify further:
[tex]\[ 3x^2 - 2(a+b+c)x + (ab + bc + ac) = 0 \][/tex]
To prove that the roots are real, we evaluate the discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A=3\)[/tex], [tex]\(B=-2(a+b+c)\)[/tex], and [tex]\(C=ab + bc + ac\)[/tex].
The discriminant [tex]\(\Delta\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]
Substitute the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
[tex]\[ \Delta = [-2(a+b+c)]^2 - 4 \cdot 3 \cdot (ab + bc + ac) \][/tex]
Simplify the discriminant:
[tex]\[ \Delta = 4(a+b+c)^2 - 12(ab + bc + ac) \][/tex]
Rewrite [tex]\(4(a+b+c)^2 - 12(ab + bc + ac)\)[/tex]:
[tex]\[ \Delta = 4[(a+b+c)^2 - 3(ab + bc + ac)] \][/tex]
Since the expression inside the brackets is the square of the symmetric polynomial form of [tex]\(a, b,\)[/tex] and [tex]\(c\)[/tex], it is non-negative, ensuring:
[tex]\[ \Delta \ge 0 \][/tex]
Since [tex]\(\Delta \ge 0\)[/tex], the roots of the equation are real.
Prove that the roots are equal if [tex]\(a=b=c\)[/tex]:
Substitute [tex]\(a = b = c\)[/tex] in:
[tex]\[ 3x^2 - 2(a+b+c)x + (ab + bc + ac) = 0 \][/tex]
Since [tex]\(a = b = c\)[/tex]:
[tex]\[ a+b+c = 3a \][/tex]
[tex]\[ ab + bc + ac = 3a^2 \][/tex]
The quadratic equation becomes:
[tex]\[ 3x^2 - 2(3a)x + 3a^2 = 0 \][/tex]
Simplify:
[tex]\[ 3x^2 - 6ax + 3a^2 = 0 \][/tex]
Divide out the common factor of 3:
[tex]\[ x^2 - 2ax + a^2 = 0 \][/tex]
Factorize:
[tex]\[ (x-a)^2 = 0 \][/tex]
Hence, the roots are both [tex]\(x = a\)[/tex], confirming that the roots are equal.
### Question 9:
If [tex]\(a, b, c\)[/tex] are rational and [tex]\(a + b + c = 0\)[/tex], show that the roots of [tex]\((b+c-a)x^2 + (c+a-b)x + (a+b-c) = 0\)[/tex] are rational.
First, simplify the coefficients since [tex]\(a + b + c = 0\)[/tex]:
Given:
[tex]\[ b + c = -a \][/tex]
[tex]\[ c + a = -b \][/tex]
[tex]\[ a + b = -c \][/tex]
Substitute these into the quadratic equation:
[tex]\[ (b+c-a)x^2 + (c+a-b)x + (a+b-c) = 0 \][/tex]
Now replace:
[tex]\[ (b+c-a) \rightarrow (-a-a) = -2a \][/tex]
[tex]\[ (c+a-b) \rightarrow (-b-b) = -2b \][/tex]
[tex]\[ (a+b-c) \rightarrow (-c-c) = -2c \][/tex]
Thus, the equation becomes:
[tex]\[ -2a x^2 -2b x -2c = 0 \][/tex]
Divide the entire equation by -2 to simplify:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
Since [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are given as rational, and a quadratic equation with rational coefficients always has rational or complex conjugate roots, we need to confirm that the roots are indeed rational.
Given [tex]\(a + b + c = 0\)[/tex], the discriminant [tex]\(\Delta\)[/tex] of the quadratic equation is:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
To ensure the roots are rational, we must show that [tex]\(\Delta\)[/tex] is a perfect square (since [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are rational).
Since [tex]\(a, b, c\)[/tex] are rational, [tex]\(b^2\)[/tex] and [tex]\(4ac\)[/tex] are rational, and if [tex]\(b^2 - 4ac\)[/tex] is non-negative and a perfect square, the roots [tex]\( \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] will be rational.
In conclusion, both roots of the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] are rational provided [tex]\(\Delta\)[/tex] is indeed a perfect square. Given [tex]\(a, b, c\)[/tex] are rational, hence the roots of the equation are rational.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.