IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To determine the pH of a 0.320 M solution of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex], where the [tex]$K_a$[/tex] of [tex]$ \text{HNO}_2 $[/tex] is [tex]$4.5 \times 10^{-4}$[/tex], follow the steps below:
1. Set up the problem:
We start by considering the dissociation of [tex]$ \text{HNO}_2 \rightarrow \text{H}^+ + \text{NO}_2^- $[/tex]. However, we need to consider the stoichiometry involved with [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex]:
- Each mole of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex] dissociates to produce two moles of [tex]$ \text{NO}_2^- $[/tex].
2. Initial Concentration:
Since the solution is 0.320 M of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex], the concentration of [tex]$ \text{NO}_2^- $[/tex] will be twice that because each mole of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex] produces two moles of [tex]$ \text{NO}_2^- $[/tex].
- Initial concentration of [tex]$ \text{NO}_2^- $[/tex] is [tex]$2 \times 0.320 = 0.640 \text{ M} $[/tex].
3. ICE Table:
We will set up the ICE table for the dissociation of [tex]$ \text{HNO}_2 $[/tex]:
[tex]\[ \begin{array}{ c|c|c|c } & \text{HNO}_2 & \text{H}^+ & \text{NO}_2^- \\ \hline \text{Initial} & 0.320 & 0 & 0.640 \\ \text{Change} & -x & +x & +x \\ \text{Equilibrium} & 0.320 - x & x & 0.640 + x \\ \end{array} \][/tex]
4. Expression for [tex]$ K_a $[/tex]:
[tex]\[ K_a = [\text{H}^+][\text{NO}_2^-] / [\text{HNO}_2] \][/tex]
Substitute the equilibrium concentrations into the expression:
[tex]\[ K_a = \left( x \right) \left( 0.640 + x \right) / \left( 0.320 - x \right) \][/tex]
5. Simplification and Assumption:
Assume that [tex]$ x $[/tex] is very small compared to 0.320 and 0.640 which allows us to simplify the expression:
[tex]\[ K_a \approx x (0.640) / 0.320 \][/tex]
Solving for [tex]$ x $[/tex]:
[tex]\[ x = \sqrt{K_a \cdot 0.320} = \sqrt{4.5 \times 10^{-4} \cdot 0.320 } \][/tex]
6. Calculate [tex]$ x $[/tex]:
[tex]\[ x \approx 0.012 \][/tex]
This [tex]$ x $[/tex] represents the concentration of [tex]$ \text{H}^+ $[/tex] ions in the solution.
7. Calculate pH:
\\
[tex]\[ pH = - \log [ \text{H}^+ ] \][/tex]
Substituting in the value of [tex]$ x $[/tex]:
[tex]\[ pH = - \log (0.012) \][/tex]
[tex]\[ pH \approx 1.92 \][/tex]
Thus, the pH of the 0.320 M solution of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex] where the [tex]$ K_a $[/tex] of [tex]$ \text{HNO}_2 $[/tex] is [tex]$ 4.5 \times 10^{-4}$[/tex] is approximately [tex]$1.92$[/tex].
1. Set up the problem:
We start by considering the dissociation of [tex]$ \text{HNO}_2 \rightarrow \text{H}^+ + \text{NO}_2^- $[/tex]. However, we need to consider the stoichiometry involved with [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex]:
- Each mole of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex] dissociates to produce two moles of [tex]$ \text{NO}_2^- $[/tex].
2. Initial Concentration:
Since the solution is 0.320 M of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex], the concentration of [tex]$ \text{NO}_2^- $[/tex] will be twice that because each mole of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex] produces two moles of [tex]$ \text{NO}_2^- $[/tex].
- Initial concentration of [tex]$ \text{NO}_2^- $[/tex] is [tex]$2 \times 0.320 = 0.640 \text{ M} $[/tex].
3. ICE Table:
We will set up the ICE table for the dissociation of [tex]$ \text{HNO}_2 $[/tex]:
[tex]\[ \begin{array}{ c|c|c|c } & \text{HNO}_2 & \text{H}^+ & \text{NO}_2^- \\ \hline \text{Initial} & 0.320 & 0 & 0.640 \\ \text{Change} & -x & +x & +x \\ \text{Equilibrium} & 0.320 - x & x & 0.640 + x \\ \end{array} \][/tex]
4. Expression for [tex]$ K_a $[/tex]:
[tex]\[ K_a = [\text{H}^+][\text{NO}_2^-] / [\text{HNO}_2] \][/tex]
Substitute the equilibrium concentrations into the expression:
[tex]\[ K_a = \left( x \right) \left( 0.640 + x \right) / \left( 0.320 - x \right) \][/tex]
5. Simplification and Assumption:
Assume that [tex]$ x $[/tex] is very small compared to 0.320 and 0.640 which allows us to simplify the expression:
[tex]\[ K_a \approx x (0.640) / 0.320 \][/tex]
Solving for [tex]$ x $[/tex]:
[tex]\[ x = \sqrt{K_a \cdot 0.320} = \sqrt{4.5 \times 10^{-4} \cdot 0.320 } \][/tex]
6. Calculate [tex]$ x $[/tex]:
[tex]\[ x \approx 0.012 \][/tex]
This [tex]$ x $[/tex] represents the concentration of [tex]$ \text{H}^+ $[/tex] ions in the solution.
7. Calculate pH:
\\
[tex]\[ pH = - \log [ \text{H}^+ ] \][/tex]
Substituting in the value of [tex]$ x $[/tex]:
[tex]\[ pH = - \log (0.012) \][/tex]
[tex]\[ pH \approx 1.92 \][/tex]
Thus, the pH of the 0.320 M solution of [tex]$ \text{Ca(NO}_2\text{)}_2 $[/tex] where the [tex]$ K_a $[/tex] of [tex]$ \text{HNO}_2 $[/tex] is [tex]$ 4.5 \times 10^{-4}$[/tex] is approximately [tex]$1.92$[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.