Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To determine which of the given quadratic equations Ramiya is solving, let's look at the step-by-step solution using the quadratic formula:
The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
We need to test each of the given quadratic equations:
1. First Equation: [tex]\( x^2 + 3x + 2 = 0 \)[/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 2\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = 3^2 - 4(1)(2) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} = \frac{-3 \pm \sqrt{1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-3 \pm 1}{2} \][/tex]
[tex]\[ x_1 = \frac{-3 + 1}{2} = \frac{-2}{2} = -1 \][/tex]
[tex]\[ x_2 = \frac{-3 - 1}{2} = \frac{-4}{2} = -2 \][/tex]
The roots are [tex]\(x_1 = -1\)[/tex] and [tex]\(x_2 = -2\)[/tex].
2. Second Equation: [tex]\( x^2 - 3x + 2 = 0 \)[/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 2\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = (-3)^2 - 4(1)(2) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-3) \pm \sqrt{1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{2} \][/tex]
[tex]\[ x_1 = \frac{3 + 1}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{2} = \frac{2}{2} = 1 \][/tex]
The roots are [tex]\(x_1 = 2\)[/tex] and [tex]\(x_2 = 1\)[/tex].
3. Third Equation: [tex]\( 2x^2 + 3x + 1 = 0 \)[/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 1\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = 3^2 - 4(2)(1) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-3 \pm 1}{4} \][/tex]
[tex]\[ x_1 = \frac{-3 + 1}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-3 - 1}{4} = \frac{-4}{4} = -1 \][/tex]
The roots are [tex]\(x_1 = -0.5\)[/tex] and [tex]\(x_2 = -1\)[/tex].
4. Fourth Equation: [tex]\( 2x^2 - 3x + 1 = 0 \)[/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 1\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = (-3)^2 - 4(2)(1) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-3) \pm \sqrt{1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{4} \][/tex]
[tex]\[ x_1 = \frac{3 + 1}{4} = \frac{4}{4} = 1 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{4} = \frac{2}{4} = 0.5 \][/tex]
The roots are [tex]\(x_1 = 1\)[/tex] and [tex]\(x_2 = 0.5\)[/tex].
Given that Ramiya's equation results in the first equation having integer roots of [tex]\(-1\)[/tex] and [tex]\(-2\)[/tex], Ramiya is solving the quadratic equation::
[tex]\[ \boxed{x^2 + 3x + 2 = 0} \][/tex]
The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
We need to test each of the given quadratic equations:
1. First Equation: [tex]\( x^2 + 3x + 2 = 0 \)[/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 2\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = 3^2 - 4(1)(2) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} = \frac{-3 \pm \sqrt{1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-3 \pm 1}{2} \][/tex]
[tex]\[ x_1 = \frac{-3 + 1}{2} = \frac{-2}{2} = -1 \][/tex]
[tex]\[ x_2 = \frac{-3 - 1}{2} = \frac{-4}{2} = -2 \][/tex]
The roots are [tex]\(x_1 = -1\)[/tex] and [tex]\(x_2 = -2\)[/tex].
2. Second Equation: [tex]\( x^2 - 3x + 2 = 0 \)[/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 2\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = (-3)^2 - 4(1)(2) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-3) \pm \sqrt{1}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{2} \][/tex]
[tex]\[ x_1 = \frac{3 + 1}{2} = \frac{4}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{2} = \frac{2}{2} = 1 \][/tex]
The roots are [tex]\(x_1 = 2\)[/tex] and [tex]\(x_2 = 1\)[/tex].
3. Third Equation: [tex]\( 2x^2 + 3x + 1 = 0 \)[/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = 1\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = 3^2 - 4(2)(1) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{-3 \pm 1}{4} \][/tex]
[tex]\[ x_1 = \frac{-3 + 1}{4} = \frac{-2}{4} = -0.5 \][/tex]
[tex]\[ x_2 = \frac{-3 - 1}{4} = \frac{-4}{4} = -1 \][/tex]
The roots are [tex]\(x_1 = -0.5\)[/tex] and [tex]\(x_2 = -1\)[/tex].
4. Fourth Equation: [tex]\( 2x^2 - 3x + 1 = 0 \)[/tex]
Here, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 1\)[/tex].
The discriminant is:
[tex]\[ b^2 - 4ac = (-3)^2 - 4(2)(1) = 9 - 8 = 1 \][/tex]
Therefore, the roots are:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-3) \pm \sqrt{1}}{2 \cdot 2} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{4} \][/tex]
[tex]\[ x_1 = \frac{3 + 1}{4} = \frac{4}{4} = 1 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{4} = \frac{2}{4} = 0.5 \][/tex]
The roots are [tex]\(x_1 = 1\)[/tex] and [tex]\(x_2 = 0.5\)[/tex].
Given that Ramiya's equation results in the first equation having integer roots of [tex]\(-1\)[/tex] and [tex]\(-2\)[/tex], Ramiya is solving the quadratic equation::
[tex]\[ \boxed{x^2 + 3x + 2 = 0} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.