IDNLearn.com connects you with a global community of knowledgeable individuals. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.

Calculate the value of the machine at the end of the third year if it depreciates at the rate of [tex]$15\%$[/tex] in the first year and [tex]$20\%$[/tex] yearly thereafter.

Copy and complete the table of values for the relation [tex]y = 2x - x^2, -2 \leq x \leq 4[/tex].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \\
\hline
[tex]$y$[/tex] & -8 & & -3 & & 0 & & 1 & & 0 & -1.3 & & -5.3 & \\
\hline
\end{tabular}

Using a scale of 2 cm to 1 unit on both axes, draw the graph for [tex]y = 2x - x^2, -2 \leq x \leq 4[/tex].

Using the graph, find the:
(i) maximum point;
(ii) line of symmetry;
(iii) range of values of [tex]$x$[/tex] for which [tex]y \geq 0[/tex].


Sagot :

To solve the question, we need to follow a methodical approach, step by step:

### Step 1: Depreciation Calculation
We'll first determine the value of the machine at the end of the third year.

#### Calculation of Machine Depreciation:
- Original value of the machine: [tex]\( P \)[/tex]
- Depreciation rate in the first year: [tex]\( 15\% \)[/tex]
- Depreciation rate in the second and subsequent years: [tex]\( 20\% \)[/tex]

After the first year:
[tex]\[ \text{Value after 1st year} = P \times (1 - 0.15) = P \times 0.85 \][/tex]

After the second year:
[tex]\[ \text{Value after 2nd year} = P \times 0.85 \times (1 - 0.20) = P \times 0.85 \times 0.80 \][/tex]

After the third year:
[tex]\[ \text{Value after 3rd year} = P \times 0.85 \times 0.80 \times (1 - 0.20) = P \times 0.85 \times 0.80 \times 0.80 \][/tex]

So, at the end of the third year, the value of the machine will be:
[tex]\[ \text{Value} = P \times 0.85 \times 0.80 \times 0.80 \][/tex]
[tex]\[ = P \times 0.85 \times 0.64 \][/tex]
[tex]\[ = P \times 0.544 \][/tex]

The machine will be worth [tex]\( 54.4\% \)[/tex] of its original value.

### Step 2: Complete the Table for [tex]\( y = 2x - x^2 \)[/tex]
Now, we will compute the [tex]\( y \)[/tex] values for given [tex]\( x \)[/tex] values:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline x & -2 & -1.5 & -1 & -0.5 & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 \\ \hline y & -8 & -5.25 & -3 & -1.25 & 0 & 0.75 & 1 & 0.75 & 0 & -1.25 & -3 & -5.25 & -8 \\ \hline \end{array} \][/tex]

### Step 3: Draw the Graph
You need to plot the graph of [tex]\( y = 2x - x^2 \)[/tex] using the given table values. Use a scale of 2 cm for 1 unit on both axes from [tex]\( x = -2 \)[/tex] to [tex]\( x = 4 \)[/tex].

### Step 4: Analyzing the Graph
From the graph, we can answer the specific questions:

(i) Maximum point:
From the completed table of values, we can see the maximum [tex]\( y \)[/tex] value is [tex]\( 1 \)[/tex] when [tex]\( x = 1 \)[/tex]. So, the maximum point is [tex]\( (1, 1) \)[/tex].

(ii) Line of symmetry:
For a quadratic function like [tex]\( y = 2x - x^2 \)[/tex], the line of symmetry is given by the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
In our equation, [tex]\( y = -x^2 + 2x \)[/tex], [tex]\( a = -1 \)[/tex] and [tex]\( b = 2 \)[/tex].
So, the line of symmetry is:
[tex]\[ x = -\frac{2}{2 \cdot (-1)} = 1 \][/tex]

(iii) Range of values of [tex]\( x \)[/tex] for which [tex]\( y \geq 0 \)[/tex]:
From the table, the values of [tex]\( x \)[/tex] for which [tex]\( y \geq 0 \)[/tex] are [tex]\( 0, 0.5, 1, 1.5, 2 \)[/tex].

So, summarizing:
1. Maximum point: [tex]\( (1, 1) \)[/tex]
2. Line of symmetry: [tex]\( x = 1 \)[/tex]
3. Range of [tex]\( x \)[/tex] values for which [tex]\( y \geq 0 \)[/tex]: [tex]\( [0, 2] \)[/tex]

I hope this detailed solution helps you understand the process and check your work!