Get clear, concise, and accurate answers to your questions on IDNLearn.com. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.

Questions 10 to 13 carry 3 marks each.

10. Prove that the opposite sides of a parallelogram are of equal length.


Sagot :

Certainly! Let's go through the steps of proving that the opposite sides of a parallelogram are of equal length.

### Definitions and Setup
Consider a parallelogram ABCD with vertices at:

- [tex]\( A(x_1, y_1) \)[/tex]
- [tex]\( B(x_2, y_2) \)[/tex]
- [tex]\( C(x_3, y_3) \)[/tex]
- [tex]\( D(x_4, y_4) \)[/tex]

In a parallelogram, by definition, the opposite sides are parallel. Specifically:
- [tex]\( AB \parallel CD \)[/tex]
- [tex]\( AD \parallel BC \)[/tex]

### Proving [tex]\( AB = CD \)[/tex]
1. Calculate the length of [tex]\( AB \)[/tex] and [tex]\( CD \)[/tex]:
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

So, the length of [tex]\( AB \)[/tex] is:
[tex]\[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Similarly, the length of [tex]\( CD \)[/tex] is:
[tex]\[ CD = \sqrt{(x_4 - x_3)^2 + (y_4 - y_3)^2} \][/tex]

2. Since [tex]\( AB \parallel CD \)[/tex] and [tex]\( ABCD \)[/tex] is a parallelogram, vectors [tex]\( \overrightarrow{AB} \)[/tex] and [tex]\( \overrightarrow{CD} \)[/tex] are:
[tex]\[ \overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) \][/tex]
[tex]\[ \overrightarrow{CD} = (x_4 - x_3, y_4 - y_3) \][/tex]

3. The property of a parallelogram states that opposite sides are equal in magnitude:
[tex]\[ AB = CD \][/tex]

Thus, we have proved [tex]\( AB = CD \)[/tex].

### Proving [tex]\( BC = AD \)[/tex]
1. Calculate the length of [tex]\( BC \)[/tex] and [tex]\( AD \)[/tex]:
Using the distance formula, the length of [tex]\( BC \)[/tex] is:
[tex]\[ BC = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2} \][/tex]

The length of [tex]\( AD \)[/tex] is:
[tex]\[ AD = \sqrt{(x_1 - x_4)^2 + (y_1 - y_4)^2} \][/tex]

2. Since [tex]\( AD \parallel BC \)[/tex] and [tex]\( ABCD \)[/tex] is a parallelogram, vectors [tex]\( \overrightarrow{BC} \)[/tex] and [tex]\( \overrightarrow{AD} \)[/tex] are:
[tex]\[ \overrightarrow{BC} = (x_3 - x_2, y_3 - y_2) \][/tex]
[tex]\[ \overrightarrow{AD} = (x_1 - x_4, y_1 - y_4) \][/tex]

3. Similarly, the property of a parallelogram states that opposite sides are equal in magnitude:
[tex]\[ BC = AD \][/tex]

Thus, we have proved [tex]\( BC = AD \)[/tex].

### Conclusion
Therefore, by using the distance formula and the properties of parallelograms, we have shown that in a parallelogram [tex]\( ABCD \)[/tex]:
- [tex]\( AB = CD \)[/tex]
- [tex]\( BC = AD \)[/tex]

This means that the opposite sides of a parallelogram are indeed of equal length, as required.