IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Join our interactive community and get comprehensive, reliable answers to all your questions.
Sagot :
To determine which table represents a linear function, we need to examine each table and check if the rate of change (or the slope) between the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values is constant. A function is linear if there is a constant difference in [tex]\(y\)[/tex] values when [tex]\(x\)[/tex] values increase by a constant amount.
### Analyzing Each Table
Table 1: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1 \frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(1 - \frac{1}{2} = \frac{1}{2}\)[/tex], [tex]\(1 \frac{1}{2} - 1 = \frac{1}{2}\)[/tex], [tex]\(2 - 1 \frac{1}{2} = \frac{1}{2}\)[/tex]
The differences (ratios) are consistent ([tex]\(\frac{1}{2}/1 = \frac{1}{2}\)[/tex]), so this table represents a linear function.
Table 2: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(\frac{1}{2} - 1 = -\frac{1}{2}\)[/tex], [tex]\(\frac{1}{3} - \frac{1}{2} = -\frac{1}{6}\)[/tex], [tex]\(\frac{1}{4} - \frac{1}{3} = -\frac{1}{12}\)[/tex]
The differences are not consistent, so this table does not represent a linear function.
Table 3: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(9 - 7 = 2\)[/tex], [tex]\(13 - 9 = 4\)[/tex], [tex]\(21 - 13 = 8\)[/tex]
The differences are not consistent, so this table does not represent a linear function.
Table 4: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(6 - 0 = 6\)[/tex], [tex]\(16 - 6 = 10\)[/tex], [tex]\(30 - 16 = 14\)[/tex]
The differences are not consistent, so this table does not represent a linear function.
### Conclusion
Based on the examination above, only the first table represents a linear function.
### Analyzing Each Table
Table 1: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1 \frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(1 - \frac{1}{2} = \frac{1}{2}\)[/tex], [tex]\(1 \frac{1}{2} - 1 = \frac{1}{2}\)[/tex], [tex]\(2 - 1 \frac{1}{2} = \frac{1}{2}\)[/tex]
The differences (ratios) are consistent ([tex]\(\frac{1}{2}/1 = \frac{1}{2}\)[/tex]), so this table represents a linear function.
Table 2: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(\frac{1}{2} - 1 = -\frac{1}{2}\)[/tex], [tex]\(\frac{1}{3} - \frac{1}{2} = -\frac{1}{6}\)[/tex], [tex]\(\frac{1}{4} - \frac{1}{3} = -\frac{1}{12}\)[/tex]
The differences are not consistent, so this table does not represent a linear function.
Table 3: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(9 - 7 = 2\)[/tex], [tex]\(13 - 9 = 4\)[/tex], [tex]\(21 - 13 = 8\)[/tex]
The differences are not consistent, so this table does not represent a linear function.
Table 4: [tex]\(x\)[/tex] and [tex]\(y\)[/tex] values are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
Differences in [tex]\(x\)[/tex]: [tex]\(2-1=1\)[/tex], [tex]\(3-2=1\)[/tex], [tex]\(4-3=1\)[/tex]
Differences in [tex]\(y\)[/tex]: [tex]\(6 - 0 = 6\)[/tex], [tex]\(16 - 6 = 10\)[/tex], [tex]\(30 - 16 = 14\)[/tex]
The differences are not consistent, so this table does not represent a linear function.
### Conclusion
Based on the examination above, only the first table represents a linear function.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.