Connect with experts and get insightful answers on IDNLearn.com. Our experts are available to provide accurate, comprehensive answers to help you make informed decisions about any topic or issue you encounter.
Sagot :
Let's address the question step-by-step and find all the requested components.
### Step 1: Find the Transposes of [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]
Given matrices:
[tex]\[ X = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \][/tex]
[tex]\[ Y = \begin{pmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix} \][/tex]
Transpose of [tex]\(X\)[/tex]:
[tex]\[ X^T = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \][/tex]
Transpose of [tex]\(Y\)[/tex]:
[tex]\[ Y^T = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix} \][/tex]
### Step 2: Find the Product [tex]\(XY\)[/tex]
To find [tex]\(XY\)[/tex], we perform matrix multiplication:
[tex]\[ XY = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix} \][/tex]
Calculating each element:
- First row, first column: [tex]\( 2 \times 5 + (-1) \times (-2) = 10 + 2 = 12 \)[/tex]
- First row, second column: [tex]\( 2 \times 0 + (-1) \times 1 = 0 - 1 = -1 \)[/tex]
- Second row, first column: [tex]\( 1 \times 5 + 3 \times (-2) = 5 - 6 = -1 \)[/tex]
- Second row, second column: [tex]\( 1 \times 0 + 3 \times 1 = 0 + 3 = 3 \)[/tex]
Thus,
[tex]\[ XY = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
### Step 3: Find the Transpose of the Product [tex]\(XY\)[/tex]
Transpose of [tex]\(XY\)[/tex]:
[tex]\[ (XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix}^T \][/tex]
[tex]\[ (XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
### Step 4: Show That [tex]\((2X)^T = 2(X^T)\)[/tex]
First, calculate [tex]\(2X\)[/tex]:
[tex]\[ 2X = 2 \times \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix} \][/tex]
Now, compute the transpose of [tex]\(2X\)[/tex]:
[tex]\[ (2X)^T = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix} \][/tex]
Next, compute [tex]\(2(X^T)\)[/tex]:
[tex]\[ 2(X^T) = 2 \times \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix} \][/tex]
We see that:
[tex]\[ (2X)^T = 2(X^T) = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix} \][/tex]
### Step 5: Show That [tex]\((XY)^T = Y^T \cdot X^T\)[/tex]
Now, we need to verify the transpose of the product rule:
[tex]\[ (XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
Let's compute the product [tex]\(Y^T X^T\)[/tex]:
[tex]\[ Y^T \cdot X^T = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \][/tex]
Calculating each element:
- First row, first column: [tex]\( 5 \times 2 + (-2) \times (-1) = 10 + 2 = 12 \)[/tex]
- First row, second column: [tex]\( 5 \times 1 + (-2) \times 3 = 5 - 6 = -1 \)[/tex]
- Second row, first column: [tex]\( 0 \times 2 + 1 \times (-1) = 0 - 1 = -1 \)[/tex]
- Second row, second column: [tex]\( 0 \times 1 + 1 \times 3 = 0 + 3 = 3 \)[/tex]
Thus,
[tex]\[ Y^T \cdot X^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
We see that:
[tex]\[ (XY)^T = Y^T \cdot X^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
### Summary
We have verified all given relationships and found the necessary transposes and products:
- [tex]\(X^T = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}\)[/tex]
- [tex]\(Y^T = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix}\)[/tex]
- [tex]\((XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix}\)[/tex]
- [tex]\((2X)^T = 2(X^T) = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix}\)[/tex]
- [tex]\((XY)^T = Y^T \cdot X^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix}\)[/tex]
### Step 1: Find the Transposes of [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]
Given matrices:
[tex]\[ X = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \][/tex]
[tex]\[ Y = \begin{pmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix} \][/tex]
Transpose of [tex]\(X\)[/tex]:
[tex]\[ X^T = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \][/tex]
Transpose of [tex]\(Y\)[/tex]:
[tex]\[ Y^T = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix} \][/tex]
### Step 2: Find the Product [tex]\(XY\)[/tex]
To find [tex]\(XY\)[/tex], we perform matrix multiplication:
[tex]\[ XY = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix} \][/tex]
Calculating each element:
- First row, first column: [tex]\( 2 \times 5 + (-1) \times (-2) = 10 + 2 = 12 \)[/tex]
- First row, second column: [tex]\( 2 \times 0 + (-1) \times 1 = 0 - 1 = -1 \)[/tex]
- Second row, first column: [tex]\( 1 \times 5 + 3 \times (-2) = 5 - 6 = -1 \)[/tex]
- Second row, second column: [tex]\( 1 \times 0 + 3 \times 1 = 0 + 3 = 3 \)[/tex]
Thus,
[tex]\[ XY = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
### Step 3: Find the Transpose of the Product [tex]\(XY\)[/tex]
Transpose of [tex]\(XY\)[/tex]:
[tex]\[ (XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix}^T \][/tex]
[tex]\[ (XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
### Step 4: Show That [tex]\((2X)^T = 2(X^T)\)[/tex]
First, calculate [tex]\(2X\)[/tex]:
[tex]\[ 2X = 2 \times \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 2 & 6 \end{pmatrix} \][/tex]
Now, compute the transpose of [tex]\(2X\)[/tex]:
[tex]\[ (2X)^T = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix} \][/tex]
Next, compute [tex]\(2(X^T)\)[/tex]:
[tex]\[ 2(X^T) = 2 \times \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix} \][/tex]
We see that:
[tex]\[ (2X)^T = 2(X^T) = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix} \][/tex]
### Step 5: Show That [tex]\((XY)^T = Y^T \cdot X^T\)[/tex]
Now, we need to verify the transpose of the product rule:
[tex]\[ (XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
Let's compute the product [tex]\(Y^T X^T\)[/tex]:
[tex]\[ Y^T \cdot X^T = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \][/tex]
Calculating each element:
- First row, first column: [tex]\( 5 \times 2 + (-2) \times (-1) = 10 + 2 = 12 \)[/tex]
- First row, second column: [tex]\( 5 \times 1 + (-2) \times 3 = 5 - 6 = -1 \)[/tex]
- Second row, first column: [tex]\( 0 \times 2 + 1 \times (-1) = 0 - 1 = -1 \)[/tex]
- Second row, second column: [tex]\( 0 \times 1 + 1 \times 3 = 0 + 3 = 3 \)[/tex]
Thus,
[tex]\[ Y^T \cdot X^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
We see that:
[tex]\[ (XY)^T = Y^T \cdot X^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix} \][/tex]
### Summary
We have verified all given relationships and found the necessary transposes and products:
- [tex]\(X^T = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}\)[/tex]
- [tex]\(Y^T = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix}\)[/tex]
- [tex]\((XY)^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix}\)[/tex]
- [tex]\((2X)^T = 2(X^T) = \begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix}\)[/tex]
- [tex]\((XY)^T = Y^T \cdot X^T = \begin{pmatrix} 12 & -1 \\ -1 & 3 \end{pmatrix}\)[/tex]
Your participation is crucial to us. Keep sharing your knowledge and experiences. Let's create a learning environment that is both enjoyable and beneficial. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.