IDNLearn.com: Your trusted source for finding accurate and reliable answers. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
To find how long it takes for 0.150 mol of silver-107 to form from 1.25 mol of palladium-107, we need to understand the radioactive decay process and apply the appropriate half-life equations.
Step-by-Step Solution:
1. Initial Conditions:
- Initial amount of palladium-107 ([tex]\(N_0\)[/tex]) = 1.25 mol
- Amount of silver-107 formed = 0.150 mol
- This means the amount of palladium-107 after the formation of silver-107 is:
[tex]\[ N(t) = N_0 - \text{amount of silver-107 formed} = 1.25 \text{ mol} - 0.150 \text{ mol} = 1.1 \text{ mol} \][/tex]
2. Fraction of Palladium Remaining:
- The fraction of palladium-107 remaining after the time [tex]\(t\)[/tex] is:
[tex]\[ \text{fraction remaining} = \frac{N(t)}{N_0} = \frac{1.1}{1.25} = 0.88 \][/tex]
3. Exponential Decay Formula:
- Palladium-107 decays following the exponential decay law:
[tex]\[ N(t) = N_0 \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \][/tex]
- Where [tex]\(t_{1/2}\)[/tex] is the half-life of palladium-107.
- We can write the fraction remaining in terms of the half-life equation:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} = 0.88 \][/tex]
4. Solving for Time [tex]\(t\)[/tex]:
- Taking the natural logarithm on both sides gives:
[tex]\[ \ln{\left( \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \right)} = \ln{(0.88)} \][/tex]
- Simplifying the left-hand side:
[tex]\[ \frac{t}{t_{1/2}} \ln{\left( \frac{1}{2} \right)} = \ln{(0.88)} \][/tex]
- Since [tex]\(\ln{\left( \frac{1}{2} \right)} = -\ln{2}\)[/tex], we get:
[tex]\[ \frac{t}{t_{1/2}} (-\ln{2}) = \ln{(0.88)} \][/tex]
- Solving for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{\ln{(0.88)}}{-\ln{2}} \times t_{1/2} \][/tex]
5. Plugging in the Values:
- Given the half-life [tex]\(t_{1/2}\)[/tex] of palladium-107 is [tex]\(6.5 \times 10^5\)[/tex] years:
[tex]\[ t = \frac{\ln{(0.88)}}{-\ln{2}} \times 6.5 \times 10^5 \text{ years} \][/tex]
6. Numerical Calculation:
- Computing the natural logarithms, we get:
[tex]\[ \ln{(0.88)} \approx -0.1278 \quad \text{and} \quad \ln{2} \approx 0.6931 \][/tex]
[tex]\[ t = \frac{-0.1278}{-0.6931} \times 6.5 \times 10^5 \text{ years} \][/tex]
[tex]\[ t \approx 0.1844 \times 6.5 \times 10^5 \text{ years} \][/tex]
[tex]\[ t \approx 119875.97 \text{ years} \][/tex]
Hence, the time required for 0.150 mol of silver-107 to form from 1.25 mol of palladium-107 is approximately 119875.97 years.
Therefore, the correct answer is:
[tex]\[ \boxed{1.2 \times 10^5 \text{ years}} \][/tex]
Step-by-Step Solution:
1. Initial Conditions:
- Initial amount of palladium-107 ([tex]\(N_0\)[/tex]) = 1.25 mol
- Amount of silver-107 formed = 0.150 mol
- This means the amount of palladium-107 after the formation of silver-107 is:
[tex]\[ N(t) = N_0 - \text{amount of silver-107 formed} = 1.25 \text{ mol} - 0.150 \text{ mol} = 1.1 \text{ mol} \][/tex]
2. Fraction of Palladium Remaining:
- The fraction of palladium-107 remaining after the time [tex]\(t\)[/tex] is:
[tex]\[ \text{fraction remaining} = \frac{N(t)}{N_0} = \frac{1.1}{1.25} = 0.88 \][/tex]
3. Exponential Decay Formula:
- Palladium-107 decays following the exponential decay law:
[tex]\[ N(t) = N_0 \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \][/tex]
- Where [tex]\(t_{1/2}\)[/tex] is the half-life of palladium-107.
- We can write the fraction remaining in terms of the half-life equation:
[tex]\[ \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} = 0.88 \][/tex]
4. Solving for Time [tex]\(t\)[/tex]:
- Taking the natural logarithm on both sides gives:
[tex]\[ \ln{\left( \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \right)} = \ln{(0.88)} \][/tex]
- Simplifying the left-hand side:
[tex]\[ \frac{t}{t_{1/2}} \ln{\left( \frac{1}{2} \right)} = \ln{(0.88)} \][/tex]
- Since [tex]\(\ln{\left( \frac{1}{2} \right)} = -\ln{2}\)[/tex], we get:
[tex]\[ \frac{t}{t_{1/2}} (-\ln{2}) = \ln{(0.88)} \][/tex]
- Solving for [tex]\(t\)[/tex]:
[tex]\[ t = \frac{\ln{(0.88)}}{-\ln{2}} \times t_{1/2} \][/tex]
5. Plugging in the Values:
- Given the half-life [tex]\(t_{1/2}\)[/tex] of palladium-107 is [tex]\(6.5 \times 10^5\)[/tex] years:
[tex]\[ t = \frac{\ln{(0.88)}}{-\ln{2}} \times 6.5 \times 10^5 \text{ years} \][/tex]
6. Numerical Calculation:
- Computing the natural logarithms, we get:
[tex]\[ \ln{(0.88)} \approx -0.1278 \quad \text{and} \quad \ln{2} \approx 0.6931 \][/tex]
[tex]\[ t = \frac{-0.1278}{-0.6931} \times 6.5 \times 10^5 \text{ years} \][/tex]
[tex]\[ t \approx 0.1844 \times 6.5 \times 10^5 \text{ years} \][/tex]
[tex]\[ t \approx 119875.97 \text{ years} \][/tex]
Hence, the time required for 0.150 mol of silver-107 to form from 1.25 mol of palladium-107 is approximately 119875.97 years.
Therefore, the correct answer is:
[tex]\[ \boxed{1.2 \times 10^5 \text{ years}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.