Explore a wide range of topics and get answers from experts on IDNLearn.com. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.

Given the following enthalpies of reaction:
[tex]\[
\begin{array}{l}
C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g) \quad \Delta H = -1323 \, \text{kJ} \\
2CO(g) + O_2(g) \rightarrow 2CO_2(g) \quad \Delta H = -566 \, \text{kJ} \\
H_2O(g) \rightarrow H_2O(l) \quad \Delta H = +44 \, \text{kJ}
\end{array}
\][/tex]

Use Hess's Law to calculate [tex]\(\Delta H\)[/tex] for the reaction:
[tex]\[
C_2H_4(g) + 2O_2(g) \rightarrow 2CO(g) + 2H_2O(l)
\][/tex]

A. [tex]\(-801 \, \text{kJ}\)[/tex]
B. [tex]\(-757 \, \text{kJ}\)[/tex]
C. [tex]\(-845 \, \text{kJ}\)[/tex]
D. [tex]\(-1977 \, \text{kJ}\)[/tex]


Sagot :

To solve this problem using Hess's Law, we aim to combine the given reactions such that we achieve the target reaction:
[tex]\[ \text{C}_2\text{H}_4\text{(g)} + 2\text{O}_2\text{(g)} \rightarrow 2\text{CO(g)} + 2\text{H}_2\text{O(g)} \][/tex]

We start by analyzing the given reactions:

1. [tex]\[ \text{C}_2\text{H}_4\text{(g)} + 3\text{O}_2\text{(g)} \rightarrow 2\text{CO}_2\text{(g)} + 2\text{H}_2\text{O (g)} \quad \Delta H = -1323 \text{ kJ} \][/tex]
2. [tex]\[ 2\text{CO(g)} + \text{O}_2\text{(g)} \rightarrow 2\text{CO}_2\text{(g)} \quad \Delta H = -566 \text{ kJ} \][/tex]
3. [tex]\[ \text{H}_2\text{O (g)} \rightarrow \text{H}_2\text{O (g)} \quad \Delta H = +44 \text{ kJ} \][/tex] (Note: This reaction doesn't change anything, so it will not be used.)

Let's adjust the given reactions to form the target reaction:

- The first reaction provides the formation of [tex]\(\text{CO}_2\)[/tex] and [tex]\(\text{H}_2\text{O}\)[/tex] from [tex]\(\text{C}_2\text{H}_4\)[/tex] and [tex]\(\text{O}_2\)[/tex].
- The second reaction can be flipped to provide [tex]\(\text{CO}\)[/tex] from [tex]\(\text{CO}_2\)[/tex].

Reverse the second reaction:
[tex]\[ 2 \text{CO}_2\text{(g)} \rightarrow 2 \text{CO(g)} + \text{O}_2\text{(g)} \quad \Delta H = +566 \text{ kJ} \][/tex]

Now we have:
1. [tex]\[ \text{C}_2\text{H}_4\text{(g)} + 3\text{O}_2\text{(g)} \rightarrow 2\text{CO}_2\text{(g)} + 2\text{H}_2\text{O (g)} \quad \Delta H = -1323 \text{ kJ} \][/tex]
2. [tex]\[ 2\text{CO}_2\text{(g)} \rightarrow 2\text{CO(g)} + \text{O}_2\text{(g)} \quad \Delta H = +566 \text{ kJ} \][/tex]

Combine these two reactions:
[tex]\[ \text{C}_2\text{H}_4\text{(g)} + 3\text{O}_2\text{(g)} + 2\text{CO}_2\text{(g)} \rightarrow 2\text{CO}_2\text{(g)} + 2\text{H}_2\text{O (g)} + 2\text{CO(g)} + \text{O}_2\text{(g)} \][/tex]

Cancel out common terms on both sides:
[tex]\[ \text{C}_2\text{H}_4\text{(g)} + 3\text{O}_2\text{(g)} \rightarrow 2\text{CO(g)} + 2\text{H}_2\text{O (g)} + \text{O}_2\text{(g)} \][/tex]
[tex]\[ \text{C}_2\text{H}_4\text{(g)} + 2\text{O}_2\text{(g)} \rightarrow 2\text{CO(g)} + 2\text{H}_2\text{O (g)} \][/tex]

Now, combine the enthalpies:
[tex]\[ \Delta H = -1323 \text{ kJ} + 566 \text{ kJ} = -757 \text{ kJ} \][/tex]

Thus, [tex]\(\Delta H\)[/tex] for the reaction [tex]\(\text{C}_2\text{H}_4\text{(g)} + 2\text{O}_2\text{(g)} \rightarrow 2\text{CO(g)} + 2\text{H}_2\text{O (g)}\)[/tex] is:
[tex]\[ \boxed{-757 \text{ kJ}} \][/tex]