Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Our community provides accurate and timely answers to help you understand and solve any issue.
Sagot :
Sure! Let's work through each expression step-by-step and convert them into terms of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], ensuring we clearly understand how the logarithmic properties are applied.
Given [tex]\( x = \ln(A) \)[/tex] and [tex]\( y = \ln(B) \)[/tex]:
### (a) [tex]\(\ln(AB)\)[/tex]
Using the property of logarithms that [tex]\(\ln(AB) = \ln(A) + \ln(B)\)[/tex], we have:
[tex]\[ \ln(AB) = \ln(A) + \ln(B) = x + y \][/tex]
### (b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right)\)[/tex]
First, we rewrite [tex]\( \sqrt{B} \)[/tex] as [tex]\( B^{1/2} \)[/tex]. Then, using the logarithm property [tex]\(\ln(xy) = \ln(x) + \ln(y)\)[/tex], we obtain:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = \ln(A^2) + \ln(B^{1/2}) \][/tex]
Next, apply the property that [tex]\(\ln(x^n) = n \ln(x)\)[/tex]:
[tex]\[ \ln(A^2) = 2 \ln(A) = 2x \][/tex]
[tex]\[ \ln(B^{1/2}) = \frac{1}{2} \ln(B) = \frac{1}{2} y \][/tex]
Combining these:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y \][/tex]
### (c) [tex]\(\frac{\ln(A)}{\ln(B)}\)[/tex]
This can be directly written as:
[tex]\[ \frac{\ln(A)}{\ln(B)} = \frac{x}{y} \][/tex]
### (d) [tex]\(\ln \left(\frac{A}{B}\right)\)[/tex]
Using the logarithm property that [tex]\(\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)\)[/tex]:
[tex]\[ \ln \left(\frac{A}{B}\right) = \ln(A) - \ln(B) = x - y \][/tex]
### (e) [tex]\(AB\)[/tex]
Using the exponential property of logarithms that if [tex]\(\ln(A) = x\)[/tex], then [tex]\(A = e^x\)[/tex]:
[tex]\[ A = e^x \quad \text{and} \quad B = e^y \][/tex]
Hence:
[tex]\[ AB = e^x \cdot e^y = e^{x+y} \][/tex]
To convert this into base 10, we recognize [tex]\(e\)[/tex] can be converted to 10 using the property [tex]\(e^k = 10^{k \ln(10)}\)[/tex]. Thus,
[tex]\[ AB = 10^{(x+y)/\ln(10)} \][/tex]
However, using [tex]\(e\)[/tex]:
[tex]\[ AB = 10^{x+y} \][/tex]
### (f) [tex]\(\ln(A - B)\)[/tex]
Unfortunately, logarithms do not have a simple property that allows [tex]\(\ln(A - B)\)[/tex] to be written in terms of [tex]\(\ln(A)\)[/tex] and [tex]\(\ln(B)\)[/tex]. Logarithmic identities mainly deal with multiplication, division, and powers, not subtraction.
Thus,
[tex]\[ \ln (A - B) \quad \text{cannot be simplified using just } x \text{ and } y. \][/tex]
To summarize:
(a) [tex]\(\ln(AB) = x + y\)[/tex]
(b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y\)[/tex]
(c) [tex]\(\frac{\ln(A)}{\ln(B)} = \frac{x}{y}\)[/tex]
(d) [tex]\(\ln \left(\frac{A}{B}\right) = x - y\)[/tex]
(e) [tex]\(AB = 10^{x+y}\)[/tex]
(f) [tex]\(\ln (A - B) \)[/tex] does not have a simplifiable form in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
Given [tex]\( x = \ln(A) \)[/tex] and [tex]\( y = \ln(B) \)[/tex]:
### (a) [tex]\(\ln(AB)\)[/tex]
Using the property of logarithms that [tex]\(\ln(AB) = \ln(A) + \ln(B)\)[/tex], we have:
[tex]\[ \ln(AB) = \ln(A) + \ln(B) = x + y \][/tex]
### (b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right)\)[/tex]
First, we rewrite [tex]\( \sqrt{B} \)[/tex] as [tex]\( B^{1/2} \)[/tex]. Then, using the logarithm property [tex]\(\ln(xy) = \ln(x) + \ln(y)\)[/tex], we obtain:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = \ln(A^2) + \ln(B^{1/2}) \][/tex]
Next, apply the property that [tex]\(\ln(x^n) = n \ln(x)\)[/tex]:
[tex]\[ \ln(A^2) = 2 \ln(A) = 2x \][/tex]
[tex]\[ \ln(B^{1/2}) = \frac{1}{2} \ln(B) = \frac{1}{2} y \][/tex]
Combining these:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y \][/tex]
### (c) [tex]\(\frac{\ln(A)}{\ln(B)}\)[/tex]
This can be directly written as:
[tex]\[ \frac{\ln(A)}{\ln(B)} = \frac{x}{y} \][/tex]
### (d) [tex]\(\ln \left(\frac{A}{B}\right)\)[/tex]
Using the logarithm property that [tex]\(\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)\)[/tex]:
[tex]\[ \ln \left(\frac{A}{B}\right) = \ln(A) - \ln(B) = x - y \][/tex]
### (e) [tex]\(AB\)[/tex]
Using the exponential property of logarithms that if [tex]\(\ln(A) = x\)[/tex], then [tex]\(A = e^x\)[/tex]:
[tex]\[ A = e^x \quad \text{and} \quad B = e^y \][/tex]
Hence:
[tex]\[ AB = e^x \cdot e^y = e^{x+y} \][/tex]
To convert this into base 10, we recognize [tex]\(e\)[/tex] can be converted to 10 using the property [tex]\(e^k = 10^{k \ln(10)}\)[/tex]. Thus,
[tex]\[ AB = 10^{(x+y)/\ln(10)} \][/tex]
However, using [tex]\(e\)[/tex]:
[tex]\[ AB = 10^{x+y} \][/tex]
### (f) [tex]\(\ln(A - B)\)[/tex]
Unfortunately, logarithms do not have a simple property that allows [tex]\(\ln(A - B)\)[/tex] to be written in terms of [tex]\(\ln(A)\)[/tex] and [tex]\(\ln(B)\)[/tex]. Logarithmic identities mainly deal with multiplication, division, and powers, not subtraction.
Thus,
[tex]\[ \ln (A - B) \quad \text{cannot be simplified using just } x \text{ and } y. \][/tex]
To summarize:
(a) [tex]\(\ln(AB) = x + y\)[/tex]
(b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y\)[/tex]
(c) [tex]\(\frac{\ln(A)}{\ln(B)} = \frac{x}{y}\)[/tex]
(d) [tex]\(\ln \left(\frac{A}{B}\right) = x - y\)[/tex]
(e) [tex]\(AB = 10^{x+y}\)[/tex]
(f) [tex]\(\ln (A - B) \)[/tex] does not have a simplifiable form in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.