IDNLearn.com: Your trusted source for finding accurate answers. Get comprehensive answers to all your questions from our network of experienced experts.
Sagot :
Sure! Let's work through each expression step-by-step and convert them into terms of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], ensuring we clearly understand how the logarithmic properties are applied.
Given [tex]\( x = \ln(A) \)[/tex] and [tex]\( y = \ln(B) \)[/tex]:
### (a) [tex]\(\ln(AB)\)[/tex]
Using the property of logarithms that [tex]\(\ln(AB) = \ln(A) + \ln(B)\)[/tex], we have:
[tex]\[ \ln(AB) = \ln(A) + \ln(B) = x + y \][/tex]
### (b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right)\)[/tex]
First, we rewrite [tex]\( \sqrt{B} \)[/tex] as [tex]\( B^{1/2} \)[/tex]. Then, using the logarithm property [tex]\(\ln(xy) = \ln(x) + \ln(y)\)[/tex], we obtain:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = \ln(A^2) + \ln(B^{1/2}) \][/tex]
Next, apply the property that [tex]\(\ln(x^n) = n \ln(x)\)[/tex]:
[tex]\[ \ln(A^2) = 2 \ln(A) = 2x \][/tex]
[tex]\[ \ln(B^{1/2}) = \frac{1}{2} \ln(B) = \frac{1}{2} y \][/tex]
Combining these:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y \][/tex]
### (c) [tex]\(\frac{\ln(A)}{\ln(B)}\)[/tex]
This can be directly written as:
[tex]\[ \frac{\ln(A)}{\ln(B)} = \frac{x}{y} \][/tex]
### (d) [tex]\(\ln \left(\frac{A}{B}\right)\)[/tex]
Using the logarithm property that [tex]\(\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)\)[/tex]:
[tex]\[ \ln \left(\frac{A}{B}\right) = \ln(A) - \ln(B) = x - y \][/tex]
### (e) [tex]\(AB\)[/tex]
Using the exponential property of logarithms that if [tex]\(\ln(A) = x\)[/tex], then [tex]\(A = e^x\)[/tex]:
[tex]\[ A = e^x \quad \text{and} \quad B = e^y \][/tex]
Hence:
[tex]\[ AB = e^x \cdot e^y = e^{x+y} \][/tex]
To convert this into base 10, we recognize [tex]\(e\)[/tex] can be converted to 10 using the property [tex]\(e^k = 10^{k \ln(10)}\)[/tex]. Thus,
[tex]\[ AB = 10^{(x+y)/\ln(10)} \][/tex]
However, using [tex]\(e\)[/tex]:
[tex]\[ AB = 10^{x+y} \][/tex]
### (f) [tex]\(\ln(A - B)\)[/tex]
Unfortunately, logarithms do not have a simple property that allows [tex]\(\ln(A - B)\)[/tex] to be written in terms of [tex]\(\ln(A)\)[/tex] and [tex]\(\ln(B)\)[/tex]. Logarithmic identities mainly deal with multiplication, division, and powers, not subtraction.
Thus,
[tex]\[ \ln (A - B) \quad \text{cannot be simplified using just } x \text{ and } y. \][/tex]
To summarize:
(a) [tex]\(\ln(AB) = x + y\)[/tex]
(b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y\)[/tex]
(c) [tex]\(\frac{\ln(A)}{\ln(B)} = \frac{x}{y}\)[/tex]
(d) [tex]\(\ln \left(\frac{A}{B}\right) = x - y\)[/tex]
(e) [tex]\(AB = 10^{x+y}\)[/tex]
(f) [tex]\(\ln (A - B) \)[/tex] does not have a simplifiable form in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
Given [tex]\( x = \ln(A) \)[/tex] and [tex]\( y = \ln(B) \)[/tex]:
### (a) [tex]\(\ln(AB)\)[/tex]
Using the property of logarithms that [tex]\(\ln(AB) = \ln(A) + \ln(B)\)[/tex], we have:
[tex]\[ \ln(AB) = \ln(A) + \ln(B) = x + y \][/tex]
### (b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right)\)[/tex]
First, we rewrite [tex]\( \sqrt{B} \)[/tex] as [tex]\( B^{1/2} \)[/tex]. Then, using the logarithm property [tex]\(\ln(xy) = \ln(x) + \ln(y)\)[/tex], we obtain:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = \ln(A^2) + \ln(B^{1/2}) \][/tex]
Next, apply the property that [tex]\(\ln(x^n) = n \ln(x)\)[/tex]:
[tex]\[ \ln(A^2) = 2 \ln(A) = 2x \][/tex]
[tex]\[ \ln(B^{1/2}) = \frac{1}{2} \ln(B) = \frac{1}{2} y \][/tex]
Combining these:
[tex]\[ \ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y \][/tex]
### (c) [tex]\(\frac{\ln(A)}{\ln(B)}\)[/tex]
This can be directly written as:
[tex]\[ \frac{\ln(A)}{\ln(B)} = \frac{x}{y} \][/tex]
### (d) [tex]\(\ln \left(\frac{A}{B}\right)\)[/tex]
Using the logarithm property that [tex]\(\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)\)[/tex]:
[tex]\[ \ln \left(\frac{A}{B}\right) = \ln(A) - \ln(B) = x - y \][/tex]
### (e) [tex]\(AB\)[/tex]
Using the exponential property of logarithms that if [tex]\(\ln(A) = x\)[/tex], then [tex]\(A = e^x\)[/tex]:
[tex]\[ A = e^x \quad \text{and} \quad B = e^y \][/tex]
Hence:
[tex]\[ AB = e^x \cdot e^y = e^{x+y} \][/tex]
To convert this into base 10, we recognize [tex]\(e\)[/tex] can be converted to 10 using the property [tex]\(e^k = 10^{k \ln(10)}\)[/tex]. Thus,
[tex]\[ AB = 10^{(x+y)/\ln(10)} \][/tex]
However, using [tex]\(e\)[/tex]:
[tex]\[ AB = 10^{x+y} \][/tex]
### (f) [tex]\(\ln(A - B)\)[/tex]
Unfortunately, logarithms do not have a simple property that allows [tex]\(\ln(A - B)\)[/tex] to be written in terms of [tex]\(\ln(A)\)[/tex] and [tex]\(\ln(B)\)[/tex]. Logarithmic identities mainly deal with multiplication, division, and powers, not subtraction.
Thus,
[tex]\[ \ln (A - B) \quad \text{cannot be simplified using just } x \text{ and } y. \][/tex]
To summarize:
(a) [tex]\(\ln(AB) = x + y\)[/tex]
(b) [tex]\(\ln \left(A^2 \cdot \sqrt{B}\right) = 2x + \frac{1}{2} y\)[/tex]
(c) [tex]\(\frac{\ln(A)}{\ln(B)} = \frac{x}{y}\)[/tex]
(d) [tex]\(\ln \left(\frac{A}{B}\right) = x - y\)[/tex]
(e) [tex]\(AB = 10^{x+y}\)[/tex]
(f) [tex]\(\ln (A - B) \)[/tex] does not have a simplifiable form in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.