IDNLearn.com is designed to help you find reliable answers quickly and easily. Join our Q&A platform to access reliable and detailed answers from experts in various fields.
Sagot :
To determine the change in potential difference ([tex]\(\Delta V\)[/tex]) experienced by an electron moving in an electric field when its velocity changes, we can use the given data and apply the principles of energy conservation and kinematics.
Given data:
- The charge-to-mass ratio ([tex]\(\frac{c}{m}\)[/tex]) of the electron is [tex]\(1.76 \times 10^{12} \, \frac{C}{kg}\)[/tex].
- Initial velocity ([tex]\(v_1\)[/tex]) is [tex]\(10^7 \, \text{m/s}\)[/tex].
- Final velocity ([tex]\(v_2\)[/tex]) is [tex]\(3 \times 10^7 \, \text{m/s}\)[/tex].
### Steps to Solve:
1. Kinetic Energy Change:
- The change in kinetic energy ([tex]\(\Delta KE\)[/tex]) of the electron as it moves would be given by the difference in the kinetic energy at the final and initial velocities.
- [tex]\[ \Delta KE = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 \][/tex]
- This can be simplified to:
- [tex]\[ \Delta KE = \frac{1}{2} m (v_2^2 - v_1^2) \][/tex]
2. Relation with Potential Difference:
- The work done to change the kinetic energy of the electron is equal to the charge ([tex]\(q\)[/tex]) times the potential difference ([tex]\(\Delta V\)[/tex]).
- [tex]\[ \Delta KE = q \Delta V \][/tex]
- Hence,
- [tex]\[ q \Delta V = \frac{1}{2} m (v_2^2 - v_1^2) \][/tex]
3. Substitute the Electron's Charge to Mass Ratio:
- The charge-to-mass ratio ([tex]\(\frac{q}{m}\)[/tex]) is given as [tex]\(1.76 \times 10^{12} \, \frac{C}{kg}\)[/tex].
- Rearrange the above equation to express [tex]\(\Delta V\)[/tex]:
- [tex]\[ \Delta V = \frac{m}{q} \times \frac{1}{2} (v_2^2 - v_1^2) \][/tex]
- Since [tex]\(\frac{q}{m} = 1.76 \times 10^{12} \, \frac{C}{kg}\)[/tex], its reciprocal [tex]\(\frac{m}{q}\)[/tex] will be [tex]\(\frac{1}{1.76 \times 10^{12}}\)[/tex].
4. Calculate [tex]\(\Delta V\)[/tex]:
- Substitute the given values:
- [tex]\[ \Delta V = \frac{1}{1.76 \times 10^{12}} \times \frac{1}{2} [(3 \times 10^7)^2 - (10^7)^2] \][/tex]
- Calculate the difference in velocities squared:
- [tex]\[ (3 \times 10^7)^2 - (10^7)^2 = 9 \times 10^{14} - 1 \times 10^{14} = 8 \times 10^{14} \][/tex]
- Now, plug this back into the equation for [tex]\(\Delta V\)[/tex]:
- [tex]\[ \Delta V = \frac{1}{1.76 \times 10^{12}} \times \frac{1}{2} \times 8 \times 10^{14} \][/tex]
- Simplify further:
- [tex]\[ \Delta V = \frac{8 \times 10^{14}}{2 \times 1.76 \times 10^{12}} = \frac{8 \times 10^{14}}{3.52 \times 10^{12}} = 2.272727 \times 10^2 \][/tex]
- [tex]\[ \Delta V \approx 2.3 \times 10^3 \, \text{V} \][/tex]
### Conclusion:
The calculated potential difference is approximately [tex]\(2.3 \times 10^3 \, \text{V}\)[/tex]. Among the given options, the closest value is:
A. [tex]\(2.3 \times 10^3 \)[/tex]
Thus, the correct answer is:
A. [tex]\(2,3 \times 10^3\)[/tex]
Given data:
- The charge-to-mass ratio ([tex]\(\frac{c}{m}\)[/tex]) of the electron is [tex]\(1.76 \times 10^{12} \, \frac{C}{kg}\)[/tex].
- Initial velocity ([tex]\(v_1\)[/tex]) is [tex]\(10^7 \, \text{m/s}\)[/tex].
- Final velocity ([tex]\(v_2\)[/tex]) is [tex]\(3 \times 10^7 \, \text{m/s}\)[/tex].
### Steps to Solve:
1. Kinetic Energy Change:
- The change in kinetic energy ([tex]\(\Delta KE\)[/tex]) of the electron as it moves would be given by the difference in the kinetic energy at the final and initial velocities.
- [tex]\[ \Delta KE = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 \][/tex]
- This can be simplified to:
- [tex]\[ \Delta KE = \frac{1}{2} m (v_2^2 - v_1^2) \][/tex]
2. Relation with Potential Difference:
- The work done to change the kinetic energy of the electron is equal to the charge ([tex]\(q\)[/tex]) times the potential difference ([tex]\(\Delta V\)[/tex]).
- [tex]\[ \Delta KE = q \Delta V \][/tex]
- Hence,
- [tex]\[ q \Delta V = \frac{1}{2} m (v_2^2 - v_1^2) \][/tex]
3. Substitute the Electron's Charge to Mass Ratio:
- The charge-to-mass ratio ([tex]\(\frac{q}{m}\)[/tex]) is given as [tex]\(1.76 \times 10^{12} \, \frac{C}{kg}\)[/tex].
- Rearrange the above equation to express [tex]\(\Delta V\)[/tex]:
- [tex]\[ \Delta V = \frac{m}{q} \times \frac{1}{2} (v_2^2 - v_1^2) \][/tex]
- Since [tex]\(\frac{q}{m} = 1.76 \times 10^{12} \, \frac{C}{kg}\)[/tex], its reciprocal [tex]\(\frac{m}{q}\)[/tex] will be [tex]\(\frac{1}{1.76 \times 10^{12}}\)[/tex].
4. Calculate [tex]\(\Delta V\)[/tex]:
- Substitute the given values:
- [tex]\[ \Delta V = \frac{1}{1.76 \times 10^{12}} \times \frac{1}{2} [(3 \times 10^7)^2 - (10^7)^2] \][/tex]
- Calculate the difference in velocities squared:
- [tex]\[ (3 \times 10^7)^2 - (10^7)^2 = 9 \times 10^{14} - 1 \times 10^{14} = 8 \times 10^{14} \][/tex]
- Now, plug this back into the equation for [tex]\(\Delta V\)[/tex]:
- [tex]\[ \Delta V = \frac{1}{1.76 \times 10^{12}} \times \frac{1}{2} \times 8 \times 10^{14} \][/tex]
- Simplify further:
- [tex]\[ \Delta V = \frac{8 \times 10^{14}}{2 \times 1.76 \times 10^{12}} = \frac{8 \times 10^{14}}{3.52 \times 10^{12}} = 2.272727 \times 10^2 \][/tex]
- [tex]\[ \Delta V \approx 2.3 \times 10^3 \, \text{V} \][/tex]
### Conclusion:
The calculated potential difference is approximately [tex]\(2.3 \times 10^3 \, \text{V}\)[/tex]. Among the given options, the closest value is:
A. [tex]\(2.3 \times 10^3 \)[/tex]
Thus, the correct answer is:
A. [tex]\(2,3 \times 10^3\)[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.