IDNLearn.com: Your one-stop platform for getting reliable answers to any question. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
Let's solve this problem step-by-step.
### Step 1: Find the composite function [tex]\( N(T(t)) \)[/tex]
Given the functions:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
[tex]\[ T(t) = 2t + 1.1 \][/tex]
To find the composite function [tex]\( N(T(t)) \)[/tex], we substitute [tex]\( T(t) = 2t + 1.1 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(2t + 1.1) \][/tex]
Substitute [tex]\( T = 2t + 1.1 \)[/tex] into the function [tex]\( N(T) \)[/tex]:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
So,
[tex]\[ N(2t + 1.1) = 26(2t + 1.1)^2 - 124(2t + 1.1) + 90 \][/tex]
Calculate [tex]\( (2t + 1.1)^2 \)[/tex]:
[tex]\[ (2t + 1.1)^2 = (2t)^2 + 2(2t)(1.1) + (1.1)^2 = 4t^2 + 4.4t + 1.21 \][/tex]
Now, substitute and simplify:
[tex]\[ N(2t + 1.1) = 26(4t^2 + 4.4t + 1.21) - 124(2t + 1.1) + 90 \][/tex]
[tex]\[ = 26 \cdot 4t^2 + 26 \cdot 4.4t + 26 \cdot 1.21 - 124 \cdot 2t - 124 \cdot 1.1 + 90 \][/tex]
[tex]\[ = 104t^2 + 114.4t + 31.46 - 248t - 136.4 + 90 \][/tex]
Combine like terms:
[tex]\[ = 104t^2 + 114.4t - 248t + 31.46 - 136.4 + 90 \][/tex]
[tex]\[ = 104t^2 - 133.6t - 14.94 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
### Step 2: Find the time when the bacteria count reaches 18481
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 18481 \)[/tex]:
[tex]\[ 104t^2 - 133.6t - 14.94 = 18481 \][/tex]
Set up the equation:
[tex]\[ 104t^2 - 133.6t - 18495.94 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. We can solve it using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 104 \)[/tex], [tex]\( b = -133.6 \)[/tex], and [tex]\( c = -18495.94 \)[/tex].
Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-133.6)^2 - 4(104)(-18495.94) \][/tex]
[tex]\[ = 17844.96 + 7696473.6 \][/tex]
[tex]\[ = 7714318.56 \][/tex]
Now find [tex]\( t \)[/tex]:
[tex]\[ t = \frac{133.6 \pm \sqrt{7714318.56}}{208} \][/tex]
[tex]\[ t \approx \frac{133.6 \pm 2777.697}{208} \][/tex]
Thus, the solutions are:
[tex]\[ t_1 = \frac{2911.297}{208} \approx 13.9936 \][/tex]
[tex]\[ t_2 = \frac{-2644.097}{208} \approx -12.7090 \][/tex]
### Conclusion
For the bacteria count to reach 18481, the valid time (assuming positive time) is:
[tex]\[ \text{Time Needed} = 13.9936 \text{ hours} \][/tex]
Thus, the final answers are:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
[tex]\[ \text{Time Needed} = 13.9936 \][/tex]
### Step 1: Find the composite function [tex]\( N(T(t)) \)[/tex]
Given the functions:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
[tex]\[ T(t) = 2t + 1.1 \][/tex]
To find the composite function [tex]\( N(T(t)) \)[/tex], we substitute [tex]\( T(t) = 2t + 1.1 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(2t + 1.1) \][/tex]
Substitute [tex]\( T = 2t + 1.1 \)[/tex] into the function [tex]\( N(T) \)[/tex]:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
So,
[tex]\[ N(2t + 1.1) = 26(2t + 1.1)^2 - 124(2t + 1.1) + 90 \][/tex]
Calculate [tex]\( (2t + 1.1)^2 \)[/tex]:
[tex]\[ (2t + 1.1)^2 = (2t)^2 + 2(2t)(1.1) + (1.1)^2 = 4t^2 + 4.4t + 1.21 \][/tex]
Now, substitute and simplify:
[tex]\[ N(2t + 1.1) = 26(4t^2 + 4.4t + 1.21) - 124(2t + 1.1) + 90 \][/tex]
[tex]\[ = 26 \cdot 4t^2 + 26 \cdot 4.4t + 26 \cdot 1.21 - 124 \cdot 2t - 124 \cdot 1.1 + 90 \][/tex]
[tex]\[ = 104t^2 + 114.4t + 31.46 - 248t - 136.4 + 90 \][/tex]
Combine like terms:
[tex]\[ = 104t^2 + 114.4t - 248t + 31.46 - 136.4 + 90 \][/tex]
[tex]\[ = 104t^2 - 133.6t - 14.94 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
### Step 2: Find the time when the bacteria count reaches 18481
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 18481 \)[/tex]:
[tex]\[ 104t^2 - 133.6t - 14.94 = 18481 \][/tex]
Set up the equation:
[tex]\[ 104t^2 - 133.6t - 18495.94 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. We can solve it using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 104 \)[/tex], [tex]\( b = -133.6 \)[/tex], and [tex]\( c = -18495.94 \)[/tex].
Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-133.6)^2 - 4(104)(-18495.94) \][/tex]
[tex]\[ = 17844.96 + 7696473.6 \][/tex]
[tex]\[ = 7714318.56 \][/tex]
Now find [tex]\( t \)[/tex]:
[tex]\[ t = \frac{133.6 \pm \sqrt{7714318.56}}{208} \][/tex]
[tex]\[ t \approx \frac{133.6 \pm 2777.697}{208} \][/tex]
Thus, the solutions are:
[tex]\[ t_1 = \frac{2911.297}{208} \approx 13.9936 \][/tex]
[tex]\[ t_2 = \frac{-2644.097}{208} \approx -12.7090 \][/tex]
### Conclusion
For the bacteria count to reach 18481, the valid time (assuming positive time) is:
[tex]\[ \text{Time Needed} = 13.9936 \text{ hours} \][/tex]
Thus, the final answers are:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
[tex]\[ \text{Time Needed} = 13.9936 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.