Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Let's solve this problem step-by-step.
### Step 1: Find the composite function [tex]\( N(T(t)) \)[/tex]
Given the functions:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
[tex]\[ T(t) = 2t + 1.1 \][/tex]
To find the composite function [tex]\( N(T(t)) \)[/tex], we substitute [tex]\( T(t) = 2t + 1.1 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(2t + 1.1) \][/tex]
Substitute [tex]\( T = 2t + 1.1 \)[/tex] into the function [tex]\( N(T) \)[/tex]:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
So,
[tex]\[ N(2t + 1.1) = 26(2t + 1.1)^2 - 124(2t + 1.1) + 90 \][/tex]
Calculate [tex]\( (2t + 1.1)^2 \)[/tex]:
[tex]\[ (2t + 1.1)^2 = (2t)^2 + 2(2t)(1.1) + (1.1)^2 = 4t^2 + 4.4t + 1.21 \][/tex]
Now, substitute and simplify:
[tex]\[ N(2t + 1.1) = 26(4t^2 + 4.4t + 1.21) - 124(2t + 1.1) + 90 \][/tex]
[tex]\[ = 26 \cdot 4t^2 + 26 \cdot 4.4t + 26 \cdot 1.21 - 124 \cdot 2t - 124 \cdot 1.1 + 90 \][/tex]
[tex]\[ = 104t^2 + 114.4t + 31.46 - 248t - 136.4 + 90 \][/tex]
Combine like terms:
[tex]\[ = 104t^2 + 114.4t - 248t + 31.46 - 136.4 + 90 \][/tex]
[tex]\[ = 104t^2 - 133.6t - 14.94 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
### Step 2: Find the time when the bacteria count reaches 18481
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 18481 \)[/tex]:
[tex]\[ 104t^2 - 133.6t - 14.94 = 18481 \][/tex]
Set up the equation:
[tex]\[ 104t^2 - 133.6t - 18495.94 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. We can solve it using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 104 \)[/tex], [tex]\( b = -133.6 \)[/tex], and [tex]\( c = -18495.94 \)[/tex].
Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-133.6)^2 - 4(104)(-18495.94) \][/tex]
[tex]\[ = 17844.96 + 7696473.6 \][/tex]
[tex]\[ = 7714318.56 \][/tex]
Now find [tex]\( t \)[/tex]:
[tex]\[ t = \frac{133.6 \pm \sqrt{7714318.56}}{208} \][/tex]
[tex]\[ t \approx \frac{133.6 \pm 2777.697}{208} \][/tex]
Thus, the solutions are:
[tex]\[ t_1 = \frac{2911.297}{208} \approx 13.9936 \][/tex]
[tex]\[ t_2 = \frac{-2644.097}{208} \approx -12.7090 \][/tex]
### Conclusion
For the bacteria count to reach 18481, the valid time (assuming positive time) is:
[tex]\[ \text{Time Needed} = 13.9936 \text{ hours} \][/tex]
Thus, the final answers are:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
[tex]\[ \text{Time Needed} = 13.9936 \][/tex]
### Step 1: Find the composite function [tex]\( N(T(t)) \)[/tex]
Given the functions:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
[tex]\[ T(t) = 2t + 1.1 \][/tex]
To find the composite function [tex]\( N(T(t)) \)[/tex], we substitute [tex]\( T(t) = 2t + 1.1 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(2t + 1.1) \][/tex]
Substitute [tex]\( T = 2t + 1.1 \)[/tex] into the function [tex]\( N(T) \)[/tex]:
[tex]\[ N(T) = 26T^2 - 124T + 90 \][/tex]
So,
[tex]\[ N(2t + 1.1) = 26(2t + 1.1)^2 - 124(2t + 1.1) + 90 \][/tex]
Calculate [tex]\( (2t + 1.1)^2 \)[/tex]:
[tex]\[ (2t + 1.1)^2 = (2t)^2 + 2(2t)(1.1) + (1.1)^2 = 4t^2 + 4.4t + 1.21 \][/tex]
Now, substitute and simplify:
[tex]\[ N(2t + 1.1) = 26(4t^2 + 4.4t + 1.21) - 124(2t + 1.1) + 90 \][/tex]
[tex]\[ = 26 \cdot 4t^2 + 26 \cdot 4.4t + 26 \cdot 1.21 - 124 \cdot 2t - 124 \cdot 1.1 + 90 \][/tex]
[tex]\[ = 104t^2 + 114.4t + 31.46 - 248t - 136.4 + 90 \][/tex]
Combine like terms:
[tex]\[ = 104t^2 + 114.4t - 248t + 31.46 - 136.4 + 90 \][/tex]
[tex]\[ = 104t^2 - 133.6t - 14.94 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
### Step 2: Find the time when the bacteria count reaches 18481
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 18481 \)[/tex]:
[tex]\[ 104t^2 - 133.6t - 14.94 = 18481 \][/tex]
Set up the equation:
[tex]\[ 104t^2 - 133.6t - 18495.94 = 0 \][/tex]
This is a quadratic equation in the form [tex]\( at^2 + bt + c = 0 \)[/tex]. We can solve it using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 104 \)[/tex], [tex]\( b = -133.6 \)[/tex], and [tex]\( c = -18495.94 \)[/tex].
Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-133.6)^2 - 4(104)(-18495.94) \][/tex]
[tex]\[ = 17844.96 + 7696473.6 \][/tex]
[tex]\[ = 7714318.56 \][/tex]
Now find [tex]\( t \)[/tex]:
[tex]\[ t = \frac{133.6 \pm \sqrt{7714318.56}}{208} \][/tex]
[tex]\[ t \approx \frac{133.6 \pm 2777.697}{208} \][/tex]
Thus, the solutions are:
[tex]\[ t_1 = \frac{2911.297}{208} \approx 13.9936 \][/tex]
[tex]\[ t_2 = \frac{-2644.097}{208} \approx -12.7090 \][/tex]
### Conclusion
For the bacteria count to reach 18481, the valid time (assuming positive time) is:
[tex]\[ \text{Time Needed} = 13.9936 \text{ hours} \][/tex]
Thus, the final answers are:
[tex]\[ N(T(t)) = 104t^2 - 133.6t - 14.94 \][/tex]
[tex]\[ \text{Time Needed} = 13.9936 \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.