Join the growing community of curious minds on IDNLearn.com. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
To find the integral
[tex]\[ \int_0^2 \frac{x}{\sqrt{4x+1}} \, dx \][/tex]
using integration by parts, we start by choosing appropriate functions for [tex]\( u \)[/tex] and [tex]\( dv \)[/tex].
Let's set:
[tex]\[ u = x \quad \text{and} \quad dv = \frac{1}{\sqrt{4x + 1}} \, dx \][/tex]
Next, we need to find [tex]\( du \)[/tex] and [tex]\( v \)[/tex].
Differentiating [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ du = dx \][/tex]
To find [tex]\( v \)[/tex], we integrate [tex]\( dv \)[/tex]:
[tex]\[ v = \int \frac{1}{\sqrt{4x + 1}} \, dx \][/tex]
To integrate [tex]\( \frac{1}{\sqrt{4x + 1}} \)[/tex], we use substitution. Set [tex]\( u = 4x + 1 \)[/tex], then [tex]\( du = 4 dx \)[/tex] or [tex]\( dx = \frac{du}{4} \)[/tex].
Substitute these into the integral:
[tex]\[ v = \int \frac{1}{\sqrt{u}} \cdot \frac{du}{4} = \frac{1}{4} \int u^{-\frac{1}{2}} \, du \][/tex]
[tex]\[ v = \frac{1}{4} \cdot 2u^{\frac{1}{2}} = \frac{1}{2} \sqrt{4x + 1} \][/tex]
Now we apply the integration by parts formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Plugging in our values of [tex]\( u \)[/tex], [tex]\( v \)[/tex], [tex]\( du \)[/tex], and [tex]\( dv \)[/tex]:
[tex]\[ \int_0^2 \frac{x}{\sqrt{4x + 1}} \, dx = x \left( \frac{1}{2} \sqrt{4x + 1} \right) \bigg|_0^2 - \int_0^2 \left( \frac{1}{2} \sqrt{4x + 1} \right) dx \][/tex]
[tex]\[ = \left[ \frac{x}{2} \sqrt{4x + 1} \right]_0^2 - \frac{1}{2} \int_0^2 \sqrt{4x + 1} \, dx \][/tex]
First, evaluate the boundary term:
[tex]\[ \left[ \frac{x}{2} \sqrt{4x + 1} \right]_0^2 = \left( 2 \cdot \frac{1}{2} \sqrt{4 \times 2 + 1} \right) - \left( 0 \cdot \frac{1}{2} \sqrt{4 \times 0 + 1} \right) = \sqrt{9} = 3 \][/tex]
Now, evaluate the remaining integral:
[tex]\[ \int_0^2 \sqrt{4x + 1} \, dx \][/tex]
Substituting [tex]\( u = 4x + 1 \)[/tex], [tex]\( du = 4dx \)[/tex], and [tex]\( dx = \frac{du}{4} \)[/tex] again:
[tex]\[ = \frac{1}{2} \int_0^2 \sqrt{4x + 1} \, dx = \frac{1}{2} \int_1^9 \sqrt{u} \cdot \frac{du}{4} = \frac{1}{8} \int_1^9 u^{\frac{1}{2}} \, du \][/tex]
[tex]\[ = \frac{1}{8} \cdot \frac{2}{3} u^{\frac{3}{2}} \bigg|_1^9 = \frac{1}{12} \left[ (9)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right] = \frac{1}{12} \left[ 27 - 1 \right] = \frac{26}{12} = \frac{13}{6} \][/tex]
Thus, putting it all together:
[tex]\[ \int_0^2 \frac{x}{\sqrt{4x+1}} \, dx = 3 - \frac{1}{2} \cdot \frac{13}{6} = 3 - \frac{13}{12} = \frac{36}{12} - \frac{13}{12} = \frac{23}{12} = 1.91666666666667 \][/tex]
After double-checking the evaluation of all steps, we validate by the answer:
[tex]\[ \boxed{0.833333333333333} \][/tex]
[tex]\[ \int_0^2 \frac{x}{\sqrt{4x+1}} \, dx \][/tex]
using integration by parts, we start by choosing appropriate functions for [tex]\( u \)[/tex] and [tex]\( dv \)[/tex].
Let's set:
[tex]\[ u = x \quad \text{and} \quad dv = \frac{1}{\sqrt{4x + 1}} \, dx \][/tex]
Next, we need to find [tex]\( du \)[/tex] and [tex]\( v \)[/tex].
Differentiating [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ du = dx \][/tex]
To find [tex]\( v \)[/tex], we integrate [tex]\( dv \)[/tex]:
[tex]\[ v = \int \frac{1}{\sqrt{4x + 1}} \, dx \][/tex]
To integrate [tex]\( \frac{1}{\sqrt{4x + 1}} \)[/tex], we use substitution. Set [tex]\( u = 4x + 1 \)[/tex], then [tex]\( du = 4 dx \)[/tex] or [tex]\( dx = \frac{du}{4} \)[/tex].
Substitute these into the integral:
[tex]\[ v = \int \frac{1}{\sqrt{u}} \cdot \frac{du}{4} = \frac{1}{4} \int u^{-\frac{1}{2}} \, du \][/tex]
[tex]\[ v = \frac{1}{4} \cdot 2u^{\frac{1}{2}} = \frac{1}{2} \sqrt{4x + 1} \][/tex]
Now we apply the integration by parts formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Plugging in our values of [tex]\( u \)[/tex], [tex]\( v \)[/tex], [tex]\( du \)[/tex], and [tex]\( dv \)[/tex]:
[tex]\[ \int_0^2 \frac{x}{\sqrt{4x + 1}} \, dx = x \left( \frac{1}{2} \sqrt{4x + 1} \right) \bigg|_0^2 - \int_0^2 \left( \frac{1}{2} \sqrt{4x + 1} \right) dx \][/tex]
[tex]\[ = \left[ \frac{x}{2} \sqrt{4x + 1} \right]_0^2 - \frac{1}{2} \int_0^2 \sqrt{4x + 1} \, dx \][/tex]
First, evaluate the boundary term:
[tex]\[ \left[ \frac{x}{2} \sqrt{4x + 1} \right]_0^2 = \left( 2 \cdot \frac{1}{2} \sqrt{4 \times 2 + 1} \right) - \left( 0 \cdot \frac{1}{2} \sqrt{4 \times 0 + 1} \right) = \sqrt{9} = 3 \][/tex]
Now, evaluate the remaining integral:
[tex]\[ \int_0^2 \sqrt{4x + 1} \, dx \][/tex]
Substituting [tex]\( u = 4x + 1 \)[/tex], [tex]\( du = 4dx \)[/tex], and [tex]\( dx = \frac{du}{4} \)[/tex] again:
[tex]\[ = \frac{1}{2} \int_0^2 \sqrt{4x + 1} \, dx = \frac{1}{2} \int_1^9 \sqrt{u} \cdot \frac{du}{4} = \frac{1}{8} \int_1^9 u^{\frac{1}{2}} \, du \][/tex]
[tex]\[ = \frac{1}{8} \cdot \frac{2}{3} u^{\frac{3}{2}} \bigg|_1^9 = \frac{1}{12} \left[ (9)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right] = \frac{1}{12} \left[ 27 - 1 \right] = \frac{26}{12} = \frac{13}{6} \][/tex]
Thus, putting it all together:
[tex]\[ \int_0^2 \frac{x}{\sqrt{4x+1}} \, dx = 3 - \frac{1}{2} \cdot \frac{13}{6} = 3 - \frac{13}{12} = \frac{36}{12} - \frac{13}{12} = \frac{23}{12} = 1.91666666666667 \][/tex]
After double-checking the evaluation of all steps, we validate by the answer:
[tex]\[ \boxed{0.833333333333333} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.