IDNLearn.com provides a seamless experience for finding the answers you need. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.

Select the correct answer.

Melissa and Robbie are flying remote control gliders. The altitude of Melissa's glider, [tex]\( h(s) \)[/tex], in feet, is modeled by the function:

[tex]\[
h(s) = 0.4(s^3 - 11s^2 + 31s - 1)
\][/tex]

where [tex]\( s \)[/tex] is time, in seconds, after launch. The altitude of Robbie's glider is modeled by function [tex]\( r \)[/tex], where [tex]\( s \)[/tex] is time, in seconds, after launch.

Which glider reaches the greater maximum altitude in the first 6 seconds after launch?


Sagot :

To determine which glider reaches the greater maximum altitude in the first 6 seconds after launch, we need to analyze the altitude functions for both gliders.

Melissa's Altitude Function:
[tex]\[ m(s) = 0.4(s^3 - 11s^2 + 31s - 1) \][/tex]

Robbie's Altitude Function:
[tex]\[ r(s) = 0.4(2s^3 - 7s^2 + 10s + 5) \][/tex]

To find the maximum altitude each glider reaches within the first 6 seconds, we need to perform the following steps for both functions [tex]\( m(s) \)[/tex] and [tex]\( r(s) \)[/tex]:

1. Calculate the first derivative of the function. This will help us find the critical points where the function could have a maximum or minimum.
2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]. These are the critical points.
3. Evaluate the function at the critical points and at the endpoints [tex]\( s = 0 \)[/tex] and [tex]\( s = 6 \)[/tex]. This will allow us to find the maximum value within the given interval.

### Step-by-Step Solution for Melissa's Glider:

#### 1. Calculate the first derivative of [tex]\( m(s) \)[/tex]:
[tex]\[ m'(s) = 0.4 \frac{d}{ds}(s^3 - 11s^2 + 31s - 1) \][/tex]
[tex]\[ m'(s) = 0.4(3s^2 - 22s + 31) \][/tex]
[tex]\[ m'(s) = 1.2s^2 - 8.8s + 12.4 \][/tex]

#### 2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]:
[tex]\[ 1.2s^2 - 8.8s + 12.4 = 0 \][/tex]
Using the quadratic formula [tex]\( s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1.2 \)[/tex], [tex]\( b = -8.8 \)[/tex], and [tex]\( c = 12.4 \)[/tex]:
[tex]\[ s = \frac{8.8 \pm \sqrt{(-8.8)^2 - 4 \cdot 1.2 \cdot 12.4}}{2 \cdot 1.2} \][/tex]
[tex]\[ s = \frac{8.8 \pm \sqrt{77.44 - 59.52}}{2.4} \][/tex]
[tex]\[ s = \frac{8.8 \pm \sqrt{17.92}}{2.4} \][/tex]
[tex]\[ s \approx \frac{8.8 \pm 4.23}{2.4} \][/tex]
[tex]\[ s_1 \approx 5.45 \][/tex]
[tex]\[ s_2 \approx 1.9 \][/tex]

#### 3. Evaluate [tex]\( m(s) \)[/tex] at [tex]\( s = 0 \)[/tex], [tex]\( s = 6 \)[/tex], and the critical points [tex]\( s = 1.9 \)[/tex] and [tex]\( s = 5.45 \)[/tex]:
[tex]\[ m(0) = 0.4(0^3 - 11(0)^2 + 31(0) - 1) = -0.4 \][/tex]
[tex]\[ m(6) = 0.4(6^3 - 11(6)^2 + 31(6) - 1) = 0.4(216 - 396 + 186 - 1) = 0.4(5) = 2 \][/tex]
[tex]\[ m(1.9) = 0.4((1.9)^3 - 11(1.9)^2 + 31(1.9) - 1) \][/tex]
[tex]\[ m(1.9) \approx 0.4(6.859 - 39.71 + 58.9 - 1) \approx 0.4(25.049) = 10.0196 \][/tex]
[tex]\[ m(5.45) = 0.4((5.45)^3 - 11(5.45)^2 + 31(5.45) - 1) \][/tex]
[tex]\[ m(5.45) \approx 0.4(161.17 - 327.32 + 168.95 - 1) \approx 0.4(1.8) = 0.72 \][/tex]

Thus, the maximum altitude for Melissa's glider is approximately [tex]\( 10.0196 \)[/tex] feet.

### Step-by-Step Solution for Robbie's Glider:

#### 1. Calculate the first derivative of [tex]\( r(s) \)[/tex]:
[tex]\[ r'(s) = 0.4 \frac{d}{ds}(2s^3 - 7s^2 + 10s + 5) \][/tex]
[tex]\[ r'(s) = 0.4(6s^2 - 14s + 10) \][/tex]
[tex]\[ r'(s) = 2.4s^2 - 5.6s + 4 \][/tex]

#### 2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]:
[tex]\[ 2.4s^2 - 5.6s + 4 = 0 \][/tex]
Using the quadratic formula [tex]\( s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 2.4 \)[/tex], [tex]\( b = -5.6 \)[/tex], and [tex]\( c = 4 \)[/tex]:
[tex]\[ s = \frac{5.6 \pm \sqrt{(-5.6)^2 - 4 \cdot 2.4 \cdot 4}}{2 \cdot 2.4} \][/tex]
[tex]\[ s = \frac{5.6 \pm \sqrt{31.36 - 38.4}}{4.8} \][/tex]
[tex]\[ s = \frac{5.6 \pm \sqrt{-7.04}}{4.8} \][/tex]

Since the discriminant ([tex]\( -7.04 \)[/tex]) is negative, the quadratic equation has no real roots. Therefore, there are no critical points within the interval [0, 6].

#### 3. Evaluate [tex]\( r(s) \)[/tex] at [tex]\( s = 0 \)[/tex] and [tex]\( s = 6 \)[/tex]:
[tex]\[ r(0) = 0.4(2(0)^3 - 7(0)^2 + 10(0) + 5) = 2 \][/tex]
[tex]\[ r(6) = 0.4(2(6)^3 - 7(6)^2 + 10(6) + 5) = 0.4(432 - 252 + 60 + 5) = 0.4(245) = 98 \][/tex]

Thus, the maximum altitude for Robbie's glider is [tex]\( 98 \)[/tex] feet.

### Conclusion:
Robbie's glider reaches a much greater maximum altitude of [tex]\( 98 \)[/tex] feet compared to Melissa's glider, which reaches a maximum altitude of approximately [tex]\( 10.0196 \)[/tex] feet. Hence,

Robbie's glider reaches the greater maximum altitude in the first 6 seconds after launch.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.