IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Ask anything and get well-informed, reliable answers from our knowledgeable community members.
Sagot :
To determine which glider reaches the greater maximum altitude in the first 6 seconds after launch, we need to analyze the altitude functions for both gliders.
Melissa's Altitude Function:
[tex]\[ m(s) = 0.4(s^3 - 11s^2 + 31s - 1) \][/tex]
Robbie's Altitude Function:
[tex]\[ r(s) = 0.4(2s^3 - 7s^2 + 10s + 5) \][/tex]
To find the maximum altitude each glider reaches within the first 6 seconds, we need to perform the following steps for both functions [tex]\( m(s) \)[/tex] and [tex]\( r(s) \)[/tex]:
1. Calculate the first derivative of the function. This will help us find the critical points where the function could have a maximum or minimum.
2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]. These are the critical points.
3. Evaluate the function at the critical points and at the endpoints [tex]\( s = 0 \)[/tex] and [tex]\( s = 6 \)[/tex]. This will allow us to find the maximum value within the given interval.
### Step-by-Step Solution for Melissa's Glider:
#### 1. Calculate the first derivative of [tex]\( m(s) \)[/tex]:
[tex]\[ m'(s) = 0.4 \frac{d}{ds}(s^3 - 11s^2 + 31s - 1) \][/tex]
[tex]\[ m'(s) = 0.4(3s^2 - 22s + 31) \][/tex]
[tex]\[ m'(s) = 1.2s^2 - 8.8s + 12.4 \][/tex]
#### 2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]:
[tex]\[ 1.2s^2 - 8.8s + 12.4 = 0 \][/tex]
Using the quadratic formula [tex]\( s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1.2 \)[/tex], [tex]\( b = -8.8 \)[/tex], and [tex]\( c = 12.4 \)[/tex]:
[tex]\[ s = \frac{8.8 \pm \sqrt{(-8.8)^2 - 4 \cdot 1.2 \cdot 12.4}}{2 \cdot 1.2} \][/tex]
[tex]\[ s = \frac{8.8 \pm \sqrt{77.44 - 59.52}}{2.4} \][/tex]
[tex]\[ s = \frac{8.8 \pm \sqrt{17.92}}{2.4} \][/tex]
[tex]\[ s \approx \frac{8.8 \pm 4.23}{2.4} \][/tex]
[tex]\[ s_1 \approx 5.45 \][/tex]
[tex]\[ s_2 \approx 1.9 \][/tex]
#### 3. Evaluate [tex]\( m(s) \)[/tex] at [tex]\( s = 0 \)[/tex], [tex]\( s = 6 \)[/tex], and the critical points [tex]\( s = 1.9 \)[/tex] and [tex]\( s = 5.45 \)[/tex]:
[tex]\[ m(0) = 0.4(0^3 - 11(0)^2 + 31(0) - 1) = -0.4 \][/tex]
[tex]\[ m(6) = 0.4(6^3 - 11(6)^2 + 31(6) - 1) = 0.4(216 - 396 + 186 - 1) = 0.4(5) = 2 \][/tex]
[tex]\[ m(1.9) = 0.4((1.9)^3 - 11(1.9)^2 + 31(1.9) - 1) \][/tex]
[tex]\[ m(1.9) \approx 0.4(6.859 - 39.71 + 58.9 - 1) \approx 0.4(25.049) = 10.0196 \][/tex]
[tex]\[ m(5.45) = 0.4((5.45)^3 - 11(5.45)^2 + 31(5.45) - 1) \][/tex]
[tex]\[ m(5.45) \approx 0.4(161.17 - 327.32 + 168.95 - 1) \approx 0.4(1.8) = 0.72 \][/tex]
Thus, the maximum altitude for Melissa's glider is approximately [tex]\( 10.0196 \)[/tex] feet.
### Step-by-Step Solution for Robbie's Glider:
#### 1. Calculate the first derivative of [tex]\( r(s) \)[/tex]:
[tex]\[ r'(s) = 0.4 \frac{d}{ds}(2s^3 - 7s^2 + 10s + 5) \][/tex]
[tex]\[ r'(s) = 0.4(6s^2 - 14s + 10) \][/tex]
[tex]\[ r'(s) = 2.4s^2 - 5.6s + 4 \][/tex]
#### 2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]:
[tex]\[ 2.4s^2 - 5.6s + 4 = 0 \][/tex]
Using the quadratic formula [tex]\( s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 2.4 \)[/tex], [tex]\( b = -5.6 \)[/tex], and [tex]\( c = 4 \)[/tex]:
[tex]\[ s = \frac{5.6 \pm \sqrt{(-5.6)^2 - 4 \cdot 2.4 \cdot 4}}{2 \cdot 2.4} \][/tex]
[tex]\[ s = \frac{5.6 \pm \sqrt{31.36 - 38.4}}{4.8} \][/tex]
[tex]\[ s = \frac{5.6 \pm \sqrt{-7.04}}{4.8} \][/tex]
Since the discriminant ([tex]\( -7.04 \)[/tex]) is negative, the quadratic equation has no real roots. Therefore, there are no critical points within the interval [0, 6].
#### 3. Evaluate [tex]\( r(s) \)[/tex] at [tex]\( s = 0 \)[/tex] and [tex]\( s = 6 \)[/tex]:
[tex]\[ r(0) = 0.4(2(0)^3 - 7(0)^2 + 10(0) + 5) = 2 \][/tex]
[tex]\[ r(6) = 0.4(2(6)^3 - 7(6)^2 + 10(6) + 5) = 0.4(432 - 252 + 60 + 5) = 0.4(245) = 98 \][/tex]
Thus, the maximum altitude for Robbie's glider is [tex]\( 98 \)[/tex] feet.
### Conclusion:
Robbie's glider reaches a much greater maximum altitude of [tex]\( 98 \)[/tex] feet compared to Melissa's glider, which reaches a maximum altitude of approximately [tex]\( 10.0196 \)[/tex] feet. Hence,
Robbie's glider reaches the greater maximum altitude in the first 6 seconds after launch.
Melissa's Altitude Function:
[tex]\[ m(s) = 0.4(s^3 - 11s^2 + 31s - 1) \][/tex]
Robbie's Altitude Function:
[tex]\[ r(s) = 0.4(2s^3 - 7s^2 + 10s + 5) \][/tex]
To find the maximum altitude each glider reaches within the first 6 seconds, we need to perform the following steps for both functions [tex]\( m(s) \)[/tex] and [tex]\( r(s) \)[/tex]:
1. Calculate the first derivative of the function. This will help us find the critical points where the function could have a maximum or minimum.
2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]. These are the critical points.
3. Evaluate the function at the critical points and at the endpoints [tex]\( s = 0 \)[/tex] and [tex]\( s = 6 \)[/tex]. This will allow us to find the maximum value within the given interval.
### Step-by-Step Solution for Melissa's Glider:
#### 1. Calculate the first derivative of [tex]\( m(s) \)[/tex]:
[tex]\[ m'(s) = 0.4 \frac{d}{ds}(s^3 - 11s^2 + 31s - 1) \][/tex]
[tex]\[ m'(s) = 0.4(3s^2 - 22s + 31) \][/tex]
[tex]\[ m'(s) = 1.2s^2 - 8.8s + 12.4 \][/tex]
#### 2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]:
[tex]\[ 1.2s^2 - 8.8s + 12.4 = 0 \][/tex]
Using the quadratic formula [tex]\( s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1.2 \)[/tex], [tex]\( b = -8.8 \)[/tex], and [tex]\( c = 12.4 \)[/tex]:
[tex]\[ s = \frac{8.8 \pm \sqrt{(-8.8)^2 - 4 \cdot 1.2 \cdot 12.4}}{2 \cdot 1.2} \][/tex]
[tex]\[ s = \frac{8.8 \pm \sqrt{77.44 - 59.52}}{2.4} \][/tex]
[tex]\[ s = \frac{8.8 \pm \sqrt{17.92}}{2.4} \][/tex]
[tex]\[ s \approx \frac{8.8 \pm 4.23}{2.4} \][/tex]
[tex]\[ s_1 \approx 5.45 \][/tex]
[tex]\[ s_2 \approx 1.9 \][/tex]
#### 3. Evaluate [tex]\( m(s) \)[/tex] at [tex]\( s = 0 \)[/tex], [tex]\( s = 6 \)[/tex], and the critical points [tex]\( s = 1.9 \)[/tex] and [tex]\( s = 5.45 \)[/tex]:
[tex]\[ m(0) = 0.4(0^3 - 11(0)^2 + 31(0) - 1) = -0.4 \][/tex]
[tex]\[ m(6) = 0.4(6^3 - 11(6)^2 + 31(6) - 1) = 0.4(216 - 396 + 186 - 1) = 0.4(5) = 2 \][/tex]
[tex]\[ m(1.9) = 0.4((1.9)^3 - 11(1.9)^2 + 31(1.9) - 1) \][/tex]
[tex]\[ m(1.9) \approx 0.4(6.859 - 39.71 + 58.9 - 1) \approx 0.4(25.049) = 10.0196 \][/tex]
[tex]\[ m(5.45) = 0.4((5.45)^3 - 11(5.45)^2 + 31(5.45) - 1) \][/tex]
[tex]\[ m(5.45) \approx 0.4(161.17 - 327.32 + 168.95 - 1) \approx 0.4(1.8) = 0.72 \][/tex]
Thus, the maximum altitude for Melissa's glider is approximately [tex]\( 10.0196 \)[/tex] feet.
### Step-by-Step Solution for Robbie's Glider:
#### 1. Calculate the first derivative of [tex]\( r(s) \)[/tex]:
[tex]\[ r'(s) = 0.4 \frac{d}{ds}(2s^3 - 7s^2 + 10s + 5) \][/tex]
[tex]\[ r'(s) = 0.4(6s^2 - 14s + 10) \][/tex]
[tex]\[ r'(s) = 2.4s^2 - 5.6s + 4 \][/tex]
#### 2. Set the first derivative equal to zero and solve for [tex]\( s \)[/tex]:
[tex]\[ 2.4s^2 - 5.6s + 4 = 0 \][/tex]
Using the quadratic formula [tex]\( s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 2.4 \)[/tex], [tex]\( b = -5.6 \)[/tex], and [tex]\( c = 4 \)[/tex]:
[tex]\[ s = \frac{5.6 \pm \sqrt{(-5.6)^2 - 4 \cdot 2.4 \cdot 4}}{2 \cdot 2.4} \][/tex]
[tex]\[ s = \frac{5.6 \pm \sqrt{31.36 - 38.4}}{4.8} \][/tex]
[tex]\[ s = \frac{5.6 \pm \sqrt{-7.04}}{4.8} \][/tex]
Since the discriminant ([tex]\( -7.04 \)[/tex]) is negative, the quadratic equation has no real roots. Therefore, there are no critical points within the interval [0, 6].
#### 3. Evaluate [tex]\( r(s) \)[/tex] at [tex]\( s = 0 \)[/tex] and [tex]\( s = 6 \)[/tex]:
[tex]\[ r(0) = 0.4(2(0)^3 - 7(0)^2 + 10(0) + 5) = 2 \][/tex]
[tex]\[ r(6) = 0.4(2(6)^3 - 7(6)^2 + 10(6) + 5) = 0.4(432 - 252 + 60 + 5) = 0.4(245) = 98 \][/tex]
Thus, the maximum altitude for Robbie's glider is [tex]\( 98 \)[/tex] feet.
### Conclusion:
Robbie's glider reaches a much greater maximum altitude of [tex]\( 98 \)[/tex] feet compared to Melissa's glider, which reaches a maximum altitude of approximately [tex]\( 10.0196 \)[/tex] feet. Hence,
Robbie's glider reaches the greater maximum altitude in the first 6 seconds after launch.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.