Join IDNLearn.com and start exploring the answers to your most pressing questions. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

The table shows the concentration of a reactant in the reaction mixture over a period of time.

\begin{tabular}{|l|l|}
\hline
Time & Concentration \\
\hline
0 s & 1.8 M \\
\hline
210 s & 1.2 M \\
\hline
450 s & 0.8 M \\
\hline
580 s & 0.6 M \\
\hline
720 s & 0.4 M \\
\hline
\end{tabular}

What is the average rate of the reaction over the entire course of the reaction?

A. [tex]$1.6 \times 10^{-3}$[/tex]

B. [tex]$1.9 \times 10^{-3}$[/tex]

C. [tex]$2.0 \times 10^{-3}$[/tex]

D. [tex]$2.2 \times 10^{-3}$[/tex]


Sagot :

To find the average rate of reaction over the entire course of the reaction, we need to determine the change in concentration and the change in time. Let's analyze the given data step by step.

### Step 1: Determine Initial and Final Concentrations and Times

From the table, we observe the following:
- Initial time ([tex]\(t_{\text{initial}}\)[/tex]) = [tex]\(0\)[/tex] seconds
- Initial concentration ([tex]\([A]_{\text{initial}}\)[/tex]) = [tex]\(1.8\)[/tex] M
- Final time ([tex]\(t_{\text{final}}\)[/tex]) = [tex]\(720\)[/tex] seconds
- Final concentration ([tex]\([A]_{\text{final}}\)[/tex]) = [tex]\(0.4\)[/tex] M

### Step 2: Calculate the Change in Concentration and Time

The change in concentration ([tex]\(\Delta [A]\)[/tex]) can be calculated as:
[tex]\[ \Delta [A] = [A]_{\text{final}} - [A]_{\text{initial}} \][/tex]
Substituting the given values:
[tex]\[ \Delta [A] = 0.4 \, \text{M} - 1.8 \, \text{M} = -1.4 \, \text{M} \][/tex]

The change in time ([tex]\(\Delta t\)[/tex]) is:
[tex]\[ \Delta t = t_{\text{final}} - t_{\text{initial}} \][/tex]
Substituting the given values:
[tex]\[ \Delta t = 720 \, \text{s} - 0 \, \text{s} = 720 \, \text{s} \][/tex]

### Step 3: Calculate the Average Rate of Reaction

The average rate of reaction ([tex]\(\text{rate}_{\text{avg}}\)[/tex]) is given by:
[tex]\[ \text{rate}_{\text{avg}} = \frac{\Delta [A]}{\Delta t} \][/tex]
Substituting the calculated values:
[tex]\[ \text{rate}_{\text{avg}} = \frac{-1.4 \, \text{M}}{720 \, \text{s}} = -0.0019444444444444444 \, \text{M/s} \][/tex]

### Step 4: Convert the Average Rate to Scientific Notation and Compare with Options

We need to convert the rate to proper scientific notation, focusing on the magnitude:
[tex]\[ \text{rate}_{\text{avg}} = -0.0019444444444444444 \, \text{M/s} = -1.9444444444444444 \times 10^{-3} \, \text{M/s} \][/tex]

Since we are interested in the magnitude and the context implies a positive reaction rate value, we consider:
[tex]\[ \text{rate}_{\text{avg}} = 1.9444444444444444 \times 10^{-3} \, \text{M/s} \][/tex]

### Step 5: Select the Closest Option

The closest option to [tex]\(1.9444444444444444 \times 10^{-3} \, \text{M/s}\)[/tex] among the provided choices is:
[tex]\[ 1.9 \times 10^{-3} \, \text{M/s} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{1.9 \times 10^{-3}} \][/tex]
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.