IDNLearn.com is your go-to resource for finding answers to any question you have. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.

Solve the inequality and write your answer using interval notation:

[tex]\[
\frac{1}{x} + \frac{1}{x+1} \ \textless \ \frac{2}{x+2}
\][/tex]

A. The solution set is [tex]\((-2, -1) \cup \left(-\frac{2}{3}, 0\right)\)[/tex]

B. The solution set is [tex]\((-\infty, 2-\sqrt{2}) \cup (3+\sqrt{2}, \infty)\)[/tex]

C. The solution set is [tex]\([-2-\sqrt{2}, -2+\sqrt{2}]\)[/tex]

D. The solution set is [tex]\((-\infty, -2-\sqrt{2}) \cup (-2+\sqrt{2}, \infty)\)[/tex]


Sagot :

To solve the inequality [tex]\(\frac{1}{x} + \frac{1}{x+1} < \frac{2}{x+2}\)[/tex], follow these steps:

1. Rewrite the inequality with a common denominator:

First, rewrite the inequality to combine the fractions on the left side. The common denominator for the fractions on the left side is [tex]\( x(x+1) \)[/tex], and for the right side, it is [tex]\( x(x+1)(x+2) \)[/tex]:

[tex]\[ \frac{(x+1) + x}{x(x+1)} < \frac{2}{x+2} \][/tex]

Simplify the numerator on the left side:
[tex]\[ \frac{2x+1}{x(x+1)} < \frac{2}{x+2} \][/tex]

2. Cross-multiply to eliminate the fractions:

To eliminate the fractions, cross-multiply (assuming [tex]\( x \)[/tex], [tex]\( x+1 \)[/tex], and [tex]\( x+2 \)[/tex] are non-zero):

[tex]\[ (2x+1)(x+2) < 2x(x+1) \][/tex]

3. Expand both sides of the inequality:

Expand the products:
[tex]\[ 2x^2 + 5x + 2 < 2x^2 + 2x \][/tex]

4. Simplify the inequality:

Subtract [tex]\( 2x^2 + 2x \)[/tex] from both sides:

[tex]\[ 5x + 2 - 2x < 0 \][/tex]

[tex]\[ 3x + 2 < 0 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Isolate [tex]\( x \)[/tex]:

[tex]\[ 3x < -2 \][/tex]

[tex]\[ x < -\frac{2}{3} \][/tex]

6. Consider the nonlinearity and potential critical points:

The solution also needs to consider the points where either the denominator of the fractions becomes zero. These critical points are [tex]\( x = 0 \)[/tex], [tex]\( x = -1 \)[/tex], and [tex]\( x = -2 \)[/tex]. So, we need to analyze the intervals determined by these points:
- [tex]\( (-\infty, -2) \)[/tex]
- [tex]\( (-2, -1) \)[/tex]
- [tex]\( (-1, 0) \)[/tex]
- [tex]\( (0, \infty) \)[/tex]

Evaluating each interval by testing points within them:

- For [tex]\( x \in (-\infty, -2) \)[/tex]:
It does not satisfy the inequality.

- For [tex]\( x \in (-2, -1) \)[/tex]:
Test with [tex]\( x = -1.5 \)[/tex]:
[tex]\[ \frac{1}{-1.5} + \frac{1}{-0.5} < \frac{2}{0.5} \][/tex]
[tex]\[ -\frac{2}{3} - 2 < 4 \][/tex]
True.

- For [tex]\( x \in (-1, 0) \)[/tex]:
Test with [tex]\( x = -0.5 \)[/tex]:
[tex]\[ \frac{1}{-0.5} + \frac{1}{0.5} < \frac{2}{1.5} \][/tex]
[tex]\[ -2 + 2 < \frac{4}{3} \][/tex]
True.

Thus, combining these results:

[tex]\[ x \in (-2, -1) \cup \left(-\frac{2}{3}, 0\right) \][/tex]

Therefore, the solution set for the inequality [tex]\(\frac{1}{x} + \frac{1}{x+1} < \frac{2}{x+2}\)[/tex] is:

[tex]\[ \boxed{(-2, -1) \cup \left(-\frac{2}{3}, 0\right)} \][/tex]