IDNLearn.com is your go-to resource for finding answers to any question you have. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
To calculate the rotational inertia of a wheel, we will proceed step-by-step. Here’s the detailed solution:
1. Kinetic Energy Conversion:
The kinetic energy is given in kilojoules (kJ). To convert this to Joules (J):
[tex]\[ 1 \text{ kJ} = 1000 \text{ J} \][/tex]
Given kinetic energy is [tex]\( 15.6 \text{ kJ} \)[/tex]:
[tex]\[ 15.6 \times 1000 = 15600 \text{ J} \][/tex]
2. Angular Velocity Conversion:
The angular velocity is given in revolutions per minute (rev/min). We need to convert this to radians per second (rad/s).
Since:
[tex]\[ 1 \text{ revolution} = 2\pi \text{ radians} \][/tex]
and:
[tex]\[ 1 \text{ minute} = 60 \text{ seconds} \][/tex]
We convert:
[tex]\[ 190 \text{ rev/min} \times \frac{2\pi \text{ rad}}{1 \text{ rev}} \times \frac{1 \text{ min}}{60 \text{ s}} = \frac{190 \times 2\pi}{60} \text{ rad/s} \][/tex]
This simplifies to:
[tex]\[ \approx 19.89675347273536 \text{ rad/s} \][/tex]
3. Rotational Inertia Calculation:
We know the expression for kinetic energy (K):
[tex]\[ K = \frac{1}{2} I \omega^2 \][/tex]
Where [tex]\( I \)[/tex] is the rotational inertia and [tex]\( \omega \)[/tex] is the angular velocity.
We rearrange this expression to solve for [tex]\( I \)[/tex]:
[tex]\[ I = \frac{2K}{\omega^2} \][/tex]
Substituting the known values of [tex]\( K = 15600 \text{ J} \)[/tex] and [tex]\( \omega = 19.89675347273536 \text{ rad/s} \)[/tex]:
[tex]\[ I = \frac{2 \times 15600}{(19.89675347273536)^2} \][/tex]
Simplifying this:
[tex]\[ I \approx 78.8116021240123 \, \text{kg·m}^2 \][/tex]
So, the rotational inertia of the wheel is approximately [tex]\( 78.8116 \, \text{kg·m}^2 \)[/tex].
1. Kinetic Energy Conversion:
The kinetic energy is given in kilojoules (kJ). To convert this to Joules (J):
[tex]\[ 1 \text{ kJ} = 1000 \text{ J} \][/tex]
Given kinetic energy is [tex]\( 15.6 \text{ kJ} \)[/tex]:
[tex]\[ 15.6 \times 1000 = 15600 \text{ J} \][/tex]
2. Angular Velocity Conversion:
The angular velocity is given in revolutions per minute (rev/min). We need to convert this to radians per second (rad/s).
Since:
[tex]\[ 1 \text{ revolution} = 2\pi \text{ radians} \][/tex]
and:
[tex]\[ 1 \text{ minute} = 60 \text{ seconds} \][/tex]
We convert:
[tex]\[ 190 \text{ rev/min} \times \frac{2\pi \text{ rad}}{1 \text{ rev}} \times \frac{1 \text{ min}}{60 \text{ s}} = \frac{190 \times 2\pi}{60} \text{ rad/s} \][/tex]
This simplifies to:
[tex]\[ \approx 19.89675347273536 \text{ rad/s} \][/tex]
3. Rotational Inertia Calculation:
We know the expression for kinetic energy (K):
[tex]\[ K = \frac{1}{2} I \omega^2 \][/tex]
Where [tex]\( I \)[/tex] is the rotational inertia and [tex]\( \omega \)[/tex] is the angular velocity.
We rearrange this expression to solve for [tex]\( I \)[/tex]:
[tex]\[ I = \frac{2K}{\omega^2} \][/tex]
Substituting the known values of [tex]\( K = 15600 \text{ J} \)[/tex] and [tex]\( \omega = 19.89675347273536 \text{ rad/s} \)[/tex]:
[tex]\[ I = \frac{2 \times 15600}{(19.89675347273536)^2} \][/tex]
Simplifying this:
[tex]\[ I \approx 78.8116021240123 \, \text{kg·m}^2 \][/tex]
So, the rotational inertia of the wheel is approximately [tex]\( 78.8116 \, \text{kg·m}^2 \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.