IDNLearn.com offers a unique blend of expert answers and community-driven knowledge. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.

Select the correct answer.

Five marbles roll down a ramp. Each marble reaches the bottom of the ramp at a speed of 3 meters/second. Which marble has the highest kinetic energy at the bottom of the ramp? The table lists the mass of each marble.

\begin{tabular}{|l|l|l|l|l|}
\hline Marble 1 & Marble 2 & Marble 3 & Marble 4 & Marble 5 \\
\hline 10 g & 20 g & 25 g & 40 g & 30 g \\
\hline
\end{tabular}

A. Marble 1
B. Marble 2
C. Marble 3
D. Marble 4
E. Marble 5


Sagot :

To determine which marble has the highest kinetic energy at the bottom of the ramp, we can use the kinetic energy formula:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Here, [tex]\( KE \)[/tex] stands for kinetic energy, [tex]\( m \)[/tex] is the mass of the marble, and [tex]\( v \)[/tex] is the speed of the marble. Given that each marble reaches the bottom of the ramp at a speed of 3 meters per second ([tex]\( v = 3 \, \text{m/s} \)[/tex]), we need to evaluate the kinetic energy for each marble using their respective masses. The masses are provided in grams, so we will first convert them into kilograms by dividing by 1000. The table provides the following masses:

- Marble 1: 10 g
- Marble 2: 20 g
- Marble 3: 25 g
- Marble 4: 40 g
- Marble 5: 30 g

Let's calculate the masses in kilograms:

- Marble 1: [tex]\( 10 \, \text{g} = \frac{10}{1000} = 0.01 \, \text{kg} \)[/tex]
- Marble 2: [tex]\( 20 \, \text{g} = \frac{20}{1000} = 0.02 \, \text{kg} \)[/tex]
- Marble 3: [tex]\( 25 \, \text{g} = \frac{25}{1000} = 0.025 \, \text{kg} \)[/tex]
- Marble 4: [tex]\( 40 \, \text{g} = \frac{40}{1000} = 0.04 \, \text{kg} \)[/tex]
- Marble 5: [tex]\( 30 \, \text{g} = \frac{30}{1000} = 0.03 \, \text{kg} \)[/tex]

Next, we will calculate the kinetic energy for each marble:

1. Marble 1:
[tex]\[ KE_1 = \frac{1}{2} \times 0.01 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_1 = \frac{1}{2} \times 0.01 \times 9 \][/tex]
[tex]\[ KE_1 = 0.5 \times 0.01 \times 9 \][/tex]
[tex]\[ KE_1 = 0.045 \, \text{J} \][/tex]

2. Marble 2:
[tex]\[ KE_2 = \frac{1}{2} \times 0.02 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_2 = \frac{1}{2} \times 0.02 \times 9 \][/tex]
[tex]\[ KE_2 = 0.5 \times 0.02 \times 9 \][/tex]
[tex]\[ KE_2 = 0.09 \, \text{J} \][/tex]

3. Marble 3:
[tex]\[ KE_3 = \frac{1}{2} \times 0.025 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_3 = \frac{1}{2} \times 0.025 \times 9 \][/tex]
[tex]\[ KE_3 = 0.5 \times 0.025 \times 9 \][/tex]
[tex]\[ KE_3 = 0.1125 \, \text{J} \][/tex]

4. Marble 4:
[tex]\[ KE_4 = \frac{1}{2} \times 0.04 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_4 = \frac{1}{2} \times 0.04 \times 9 \][/tex]
[tex]\[ KE_4 = 0.5 \times 0.04 \times 9 \][/tex]
[tex]\[ KE_4 = 0.18 \, \text{J} \][/tex]

5. Marble 5:
[tex]\[ KE_5 = \frac{1}{2} \times 0.03 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_5 = \frac{1}{2} \times 0.03 \times 9 \][/tex]
[tex]\[ KE_5 = 0.5 \times 0.03 \times 9 \][/tex]
[tex]\[ KE_5 = 0.135 \, \text{J} \][/tex]

By comparing the kinetic energy values, we can see that Marble 4, with a kinetic energy of [tex]\( 0.18 \, \text{J} \)[/tex], has the highest kinetic energy.

Therefore, the correct answer is:

D. Marble 4