Find the best answers to your questions with the help of IDNLearn.com's expert contributors. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.

Fill in the blank. Show your work on Exam 4 Required Work to be Shown.

Given: [tex]f(x)=1-x^2[/tex]

a. Find the formula for the Riemann sum obtained by dividing the interval [tex][0,1][/tex] into [tex]n[/tex] equal subintervals and using the right-hand endpoint for [tex]c_k[/tex]. (Write your answer on your paper and show all of your work. Simplify to two terms.)

b. Then find the limit of the sum as [tex]n \rightarrow \infty[/tex] to calculate the area under the curve.

The area under the curve is: [tex]\square[/tex]


Sagot :

To solve this problem, we need to follow a series of steps to calculate the Riemann sum and then determine the limit as [tex]\( n \to \infty \)[/tex].

### Part (a): Riemann Sum Formula

Given the function [tex]\( f(x) = 1 - x^2 \)[/tex] on the interval [tex]\([0,1]\)[/tex]:

1. Divide the interval [tex]\([0,1]\)[/tex] into [tex]\( n \)[/tex] subintervals:
Each subinterval will have width [tex]\( \Delta x = \frac{1-0}{n} = \frac{1}{n} \)[/tex].

2. Right-hand endpoint for [tex]\( c_k \)[/tex]:
The right-hand endpoint for the [tex]\( k \)[/tex]-th subinterval is:
[tex]\[ x_k = a + k \Delta x \][/tex]
Since [tex]\( a = 0 \)[/tex], this becomes:
[tex]\[ x_k = 0 + k \cdot \frac{1}{n} = \frac{k}{n} \][/tex]

3. Formula for the Riemann sum:
The Riemann sum using right-hand endpoints is given by:
[tex]\[ S_n = \sum_{k=1}^{n} f(x_k) \Delta x \][/tex]
Plugging in the given [tex]\( f(x) \)[/tex] and [tex]\( x_k \)[/tex]:
[tex]\[ S_n = \sum_{k=1}^{n} f\left( \frac{k}{n} \right) \Delta x \][/tex]
[tex]\[ S_n = \sum_{k=1}^{n} \left( 1 - \left( \frac{k}{n} \right)^2 \right) \cdot \frac{1}{n} \][/tex]
[tex]\[ S_n = \sum_{k=1}^{n} \left( 1 - \frac{k^2}{n^2} \right) \cdot \frac{1}{n} \][/tex]
[tex]\[ S_n = \sum_{k=1}^{n} \left( \frac{1}{n} - \frac{k^2}{n^3} \right) \][/tex]
[tex]\[ S_n = \sum_{k=1}^{n} \frac{1}{n} - \sum_{k=1}^{n} \frac{k^2}{n^3} \][/tex]
[tex]\[ S_n = \frac{1}{n} \sum_{k=1}^{n} 1 - \frac{1}{n^3} \sum_{k=1}^{n} k^2 \][/tex]
[tex]\[ S_n = 1 - \frac{1}{n^3} \sum_{k=1}^{n} k^2 \][/tex]

Simplifying further, we need the formula for the sum of squares:
[tex]\[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \][/tex]

So the Riemann sum formula becomes:
[tex]\[ S_n = 1 - \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \][/tex]
[tex]\[ S_n = 1 - \frac{(n+1)(2n+1)}{6n^2} \][/tex]

### Part (b): Taking the Limit as [tex]\( n \to \infty \)[/tex]

Now, we need to find the limit of [tex]\( S_n \)[/tex] as [tex]\( n \to \infty \)[/tex]:

[tex]\[ \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( 1 - \frac{(n+1)(2n+1)}{6n^2} \right) \][/tex]

Consider the limit:

[tex]\[ \lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2} \][/tex]
[tex]\[ = \lim_{n \to \infty} \frac{2n^2 + 3n + 1}{6n^2} \][/tex]
[tex]\[ = \lim_{n \to \infty} \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{6} \][/tex]
[tex]\[ = \frac{2}{6} = \frac{1}{3} \][/tex]

Thus, we have:

[tex]\[ \lim_{n \to \infty} S_n = 1 - \frac{1}{3} = \frac{2}{3} \][/tex]

So, the area under the curve [tex]\( f(x) = 1 - x^2 \)[/tex] on the interval [tex]\([0,1]\)[/tex] is:

[tex]\[ \boxed{\frac{2}{3}} \][/tex]

Therefore, the final answer for the area under the curve is: [tex]\(\frac{2}{3}\)[/tex].