IDNLearn.com is your go-to resource for finding expert answers and community support. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Using the equations

[tex]\[ H_2(g) + F_2(g) \rightarrow 2 HF(g) \quad \Delta H^{\circ} = -79.2 \, \text{kJ/mol} \][/tex]

[tex]\[ C(s) + 2 F_2(g) \rightarrow CF_4(g) \quad \Delta H^{\circ} = 141.3 \, \text{kJ/mol} \][/tex]

Determine the molar enthalpy (in [tex]\[\text{kJ/mol}\][/tex]) for the reaction

[tex]\[ C(s) + 4 HF(g) \rightarrow CF_4(g) + 2 H_2(g) \][/tex]


Sagot :

To determine the molar enthalpy change for the reaction [tex]\( C(s) + 4 \text{HF}(g) \rightarrow \text{CF}_4(g) + 2 \text{H}_2(g) \)[/tex], we will make use of two given reactions and their respective enthalpy changes ([tex]\(\Delta H\)[/tex]):

1. [tex]\( \text{H}_2(g) + \text{F}_2(g) \rightarrow 2 \text{HF}(g) \)[/tex], [tex]\( \Delta H^\circ = -79.2 \, \text{kJ/mol} \)[/tex]
2. [tex]\( \text{C}(s) + 2 \text{F}_2(g) \rightarrow \text{CF}_4(g) \)[/tex], [tex]\( \Delta H^\circ = 141.3 \, \text{kJ/mol} \)[/tex]

Let’s analyze the given reactions step-by-step:

### Step 1: Reverse the first reaction
The first reaction (formation of 2 HF from H2 and F2) needs to be reversed, as we have 4 HF on the reactant side in the target reaction. Reversing the direction of a chemical equation inverts the sign of [tex]\(\Delta H\)[/tex]:

[tex]\[ 2 \text{HF}(g) \rightarrow \text{H}_2(g) + \text{F}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = +79.2 \, \text{kJ/mol} \][/tex]

### Step 2: Double the reversed reaction 1
To match the 4 HF from the target reaction, we need to multiply the reversed reaction by 2:

[tex]\[ 4 \text{HF}(g) \rightarrow 2 \text{H}_2(g) + 2 \text{F}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = 2 \times 79.2\, \text{kJ/mol} = 158.4 \, \text{kJ/mol} \][/tex]

### Step 3: Combine with reaction 2
Now, consider reaction 2:

[tex]\[ \text{C}(s) + 2 \text{F}_2(g) \rightarrow \text{CF}_4(g) \][/tex]
[tex]\[ \Delta H^\circ = 141.3 \, \text{kJ/mol} \][/tex]

### Step 4: Combine the adjusted reactions
We need to add the doubled reversed reaction 1 to reaction 2. The combination looks like this:

[tex]\[ \left( 4 \text{HF}(g) \rightarrow 2 \text{H}_2(g) + 2 \text{F}_2(g) \right) + \left( \text{C}(s) + 2 \text{F}_2(g) \rightarrow \text{CF}_4(g) \right) \][/tex]

By combining:
[tex]\[ 4 \text{HF}(g) + \text{C}(s) + 2 \text{F}_2(g) \rightarrow 2 \text{H}_2(g) + 2 \text{F}_2(g) + \text{CF}_4(g) \][/tex]

### Step 5: Simplify the overall equation
The 2 \text{F}_2(g) on both sides cancel out:

[tex]\[ \text{C}(s) + 4 \text{HF}(g) \rightarrow \text{CF}_4(g) + 2 \text{H}_2(g) \][/tex]

This is exactly the target reaction.

### Step 6: Calculate the total molar enthalpy change
The total enthalpy change for the combined reactions is the sum of their individual enthalpy changes:

[tex]\[ \Delta H_{\text{total}} = 158.4 \, \text{kJ/mol} + 141.3 \, \text{kJ/mol} = 299.7 \, \text{kJ/mol} \][/tex]

Therefore, the molar enthalpy change for the reaction [tex]\( \text{C}(s) + 4 \text{HF}(g) \rightarrow \text{CF}_4(g) + 2 \text{H}_2(g) \)[/tex] is [tex]\( 299.7 \, \text{kJ/mol} \)[/tex].