IDNLearn.com provides a comprehensive solution for all your question and answer needs. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.

Use the Fundamental Theorem of Calculus to find the area of the region between the graph of the function [tex]\frac{5}{7} x^{\frac{2}{7}}+\frac{1}{2} x^{\frac{4}{9}}+6[/tex] and the [tex]x[/tex]-axis on the interval [tex][4, 8][/tex]. Round off your answer to the nearest integer.

A. 52 units [tex]^2[/tex]
B. 40 units [tex]^2[/tex]
C. 33 units [tex]^2[/tex]
D. 34 units [tex]^2[/tex]


Sagot :

To find the area of the region between the graph of the function [tex]\( f(x) = \frac{5}{7} x^{\frac{2}{7}} + \frac{1}{2} x^{\frac{4}{9}} + 6 \)[/tex] and the [tex]\( x \)[/tex]-axis on the interval [tex]\([4, 8]\)[/tex], we use the Fundamental Theorem of Calculus. The steps are as follows:

1. Define the Integral:
We need to compute the definite integral of the function [tex]\( f(x) \)[/tex] from 4 to 8:
[tex]\[ \int_{4}^{8} \left( \frac{5}{7} x^{\frac{2}{7}} + \frac{1}{2} x^{\frac{4}{9}} + 6 \right) \, dx \][/tex]

2. Compute the Antiderivative:
First, we find the antiderivative [tex]\( F(x) \)[/tex] of the function [tex]\( f(x) \)[/tex]:
[tex]\[ \int \left( \frac{5}{7} x^{\frac{2}{7}} + \frac{1}{2} x^{\frac{4}{9}} + 6 \right) \, dx \][/tex]
The antiderivatives of the individual terms are:
- For [tex]\( \frac{5}{7} x^{\frac{2}{7}} \)[/tex]:
[tex]\[ \int \frac{5}{7} x^{\frac{2}{7}} \, dx = \frac{5}{7} \cdot \frac{7}{9} x^{\frac{9}{7}} = \frac{5}{9} x^{\frac{9}{7}} \][/tex]
- For [tex]\( \frac{1}{2} x^{\frac{4}{9}} \)[/tex]:
[tex]\[ \int \frac{1}{2} x^{\frac{4}{9}} \, dx = \frac{1}{2} \cdot \frac{9}{13} x^{\frac{13}{9}} = \frac{9}{26} x^{\frac{13}{9}} \][/tex]
- For 6:
[tex]\[ \int 6 \, dx = 6x \][/tex]
Therefore, the antiderivative [tex]\( F(x) \)[/tex] is:
[tex]\[ F(x) = \frac{5}{9} x^{\frac{9}{7}} + \frac{9}{26} x^{\frac{13}{9}} + 6x + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration, which is not needed for definite integrals.

3. Evaluate the Definite Integral:
We now evaluate [tex]\( F(x) \)[/tex] at the upper and lower limits of the interval and subtract:
[tex]\[ \int_{4}^{8} f(x) \, dx = F(8) - F(4) \][/tex]
Substituting the values of 8 and 4 into [tex]\( F(x) \)[/tex]:
[tex]\[ F(8) = \frac{5}{9} \cdot 8^{\frac{9}{7}} + \frac{9}{26} \cdot 8^{\frac{13}{9}} + 6 \cdot 8 \][/tex]
[tex]\[ F(4) = \frac{5}{9} \cdot 4^{\frac{9}{7}} + \frac{9}{26} \cdot 4^{\frac{13}{9}} + 6 \cdot 4 \][/tex]
Now, calculate [tex]\( F(8) \)[/tex] and [tex]\( F(4) \)[/tex]:
[tex]\[ F(8) \approx 90.780 \][/tex]
[tex]\[ F(4) \approx 57.617 \][/tex]
Therefore, the definite integral is:
[tex]\[ \int_{4}^{8} f(x) \, dx = 90.780 - 57.617 \approx 33.163 \][/tex]

4. Round the Result:
The area of the region, rounded to the nearest integer, is:
[tex]\[ \boxed{33 \text{ units}^2} \][/tex]

Hence, the correct answer is [tex]\( 33 \text{ units}^2 \)[/tex].