IDNLearn.com provides a user-friendly platform for finding answers to your questions. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.

Consider the quadratic function shown in the table below.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 12 \\
\hline
3 & 27 \\
\hline
\end{tabular}
\][/tex]

Which exponential function grows at a faster rate than the quadratic function for [tex]$0\ \textless \ x\ \textless \ 3$[/tex]?


Sagot :

To solve this problem, we first need to identify the quadratic function based on the given points [tex]\((0, 0)\)[/tex], [tex]\((1, 3)\)[/tex], [tex]\((2, 12)\)[/tex], and [tex]\((3, 27)\)[/tex].

1. Formulating the Quadratic Function:
The general form of a quadratic function is [tex]\( y = ax^2 + bx + c \)[/tex].

- From the given point [tex]\((0, 0)\)[/tex], we can determine that [tex]\( c = 0 \)[/tex] because when [tex]\( x = 0 \)[/tex], [tex]\( y = 0 \)[/tex].

2. Using Points to Find [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
We will now use the points [tex]\((1, 3)\)[/tex] and [tex]\((2, 12)\)[/tex] to form a system of equations:

- For point [tex]\((1, 3)\)[/tex]:
[tex]\[ 3 = a(1)^2 + b(1) + 0 \implies a + b = 3 \][/tex]

- For point [tex]\((2, 12)\)[/tex]:
[tex]\[ 12 = a(2)^2 + b(2) + 0 \implies 4a + 2b = 12 \][/tex]

3. Solving the System of Equations:
We have the system:
[tex]\[ \begin{cases} a + b = 3 \\ 4a + 2b = 12 \end{cases} \][/tex]
- Multiply the first equation by 2:
[tex]\[ 2a + 2b = 6 \][/tex]
- Subtract this from the second equation:
[tex]\[ (4a + 2b) - (2a + 2b) = 12 - 6 \implies 2a = 6 \implies a = 3 \][/tex]
- Substitute [tex]\( a = 3 \)[/tex] back into [tex]\( a + b = 3 \)[/tex]:
[tex]\[ 3 + b = 3 \implies b = 0 \][/tex]

Therefore, the quadratic function is:
[tex]\[ y = 3x^2 \][/tex]

4. Comparing with an Exponential Function:
To find an exponential function that grows faster than [tex]\( y = 3x^2 \)[/tex] in the given range [tex]\( 0 < x < 3 \)[/tex], we consider exponential functions of the form [tex]\( y = e^x \)[/tex] or [tex]\( y = 2^x \)[/tex].

5. Evaluating Growth Rates:
- For [tex]\( y = 2^x \)[/tex] at [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 2^3 = 8 \][/tex]

- For [tex]\( y = 3x^2 \)[/tex] at [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 3 \cdot 3^2 = 3 \cdot 9 = 27 \][/tex]

Since the quadratic function [tex]\( y = 3x^2 \)[/tex] at [tex]\( x = 3 \)[/tex] gives [tex]\( y = 27 \)[/tex], which exceeds the growth of the exponential function [tex]\( y = 2^x \)[/tex] at [tex]\( x = 3 \)[/tex], we can infer that for larger bases in the exponential form, the exponential function will eventually grow faster.

Thus, [tex]\( y = e^x \)[/tex] or higher bases like [tex]\( y = 3^x \)[/tex] and [tex]\( y = 4^x \)[/tex] grow faster than the given quadratic function as [tex]\( x \)[/tex] increases, but in the range [tex]\( 0 < x < 3 \)[/tex], identifying even moderate exponential growth, [tex]\( y = 2^x \)[/tex] already approaches the growth rate significantly though does not exceed at x=3 specifically.

Conclusively, functions such as [tex]\( y = e^x \)[/tex] or [tex]\( y = 3^x \)[/tex] ultimately show faster growth compared to [tex]\( y = 3x^2 \)[/tex] ultimately at larger [tex]\( x \)[/tex], beyond narrow intervals.