IDNLearn.com is your go-to resource for finding precise and accurate answers. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
To analyze which exponential function grows at a faster rate than the given quadratic function within the interval [tex]\( 0 < x < 3 \)[/tex], we need to compare the rates of change of both functions over the given range.
First, let's calculate the rate of change of the quadratic function:
Given values for the quadratic function:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 0 \\ \hline 1 & 3 \\ \hline 2 & 12 \\ \hline 3 & 27 \\ \hline \end{array} \][/tex]
The rate of change over each interval [tex]\([x_i, x_{i+1}]\)[/tex] can be calculated using the formula:
[tex]\[ \text{Rate of change} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \][/tex]
For the interval [tex]\([0, 1]\)[/tex]:
[tex]\[ \text{Rate of change}_1 = \frac{3 - 0}{1 - 0} = 3.0 \][/tex]
For the interval [tex]\([1, 2]\)[/tex]:
[tex]\[ \text{Rate of change}_2 = \frac{12 - 3}{2 - 1} = 9.0 \][/tex]
For the interval [tex]\([2, 3]\)[/tex]:
[tex]\[ \text{Rate of change}_3 = \frac{27 - 12}{3 - 2} = 15.0 \][/tex]
So, the rates of change for the quadratic function are:
[tex]\[ [3.0, 9.0, 15.0] \][/tex]
Next, consider an exponential function of the general form [tex]\( y = a \cdot b^x \)[/tex]. For simplicity, let's analyze the exponential function [tex]\( y = 2^x \)[/tex].
Given values for the exponential function [tex]\( y = 2^x \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 1 \\ \hline 1 & 2 \\ \hline 2 & 4 \\ \hline 3 & 8 \\ \hline \end{array} \][/tex]
Again, we calculate the rate of change over each interval:
For the interval [tex]\([0, 1]\)[/tex]:
[tex]\[ \text{Rate of change}_1 = \frac{2 - 1}{1 - 0} = 1.0 \][/tex]
For the interval [tex]\([1, 2]\)[/tex]:
[tex]\[ \text{Rate of change}_2 = \frac{4 - 2}{2 - 1} = 2.0 \][/tex]
For the interval [tex]\([2, 3]\)[/tex]:
[tex]\[ \text{Rate of change}_3 = \frac{8 - 4}{3 - 2} = 4.0 \][/tex]
So, the rates of change for the exponential function [tex]\( y = 2^x \)[/tex] are:
[tex]\[ [1.0, 2.0, 4.0] \][/tex]
Comparing the rates of change:
- Quadratic function: [tex]\([3.0, 9.0, 15.0]\)[/tex]
- Exponential function [tex]\( y = 2^x \)[/tex]: [tex]\([1.0, 2.0, 4.0]\)[/tex]
Clearly, the quadratic function has higher rates of change within the interval [tex]\( 0 < x < 3 \)[/tex] compared to the exponential function [tex]\( y = 2^x \)[/tex].
To find an exponential function that grows faster, we need an exponential function where the rate of change exceeds 15.0 by [tex]\( x = 3 \)[/tex]. Let's consider a stronger exponential function [tex]\( y = 4^x \)[/tex]:
Given values for the exponential function [tex]\( y = 4^x \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 1 \\ \hline 1 & 4 \\ \hline 2 & 16 \\ \hline 3 & 64 \\ \hline \end{array} \][/tex]
Now, calculate the rate of change:
For the interval [tex]\([0, 1]\)[/tex]:
[tex]\[ \text{Rate of change}_1 = \frac{4 - 1}{1 - 0} = 3.0 \][/tex]
For the interval [tex]\([1, 2]\)[/tex]:
[tex]\[ \text{Rate of change}_2 = \frac{16 - 4}{2 - 1} = 12.0 \][/tex]
For the interval [tex]\([2, 3]\)[/tex]:
[tex]\[ \text{Rate of change}_3 = \frac{64 - 16}{3 - 2} = 48.0 \][/tex]
So, the rates of change for the exponential function [tex]\( y = 4^x \)[/tex] are:
[tex]\[ [3.0, 12.0, 48.0] \][/tex]
When we compare:
- Quadratic function: [tex]\([3.0, 9.0, 15.0]\)[/tex]
- Exponential function [tex]\( y = 4^x \)[/tex]: [tex]\([3.0, 12.0, 48.0]\)[/tex]
It is evident that the exponential function [tex]\( y = 4^x \)[/tex] eventually grows faster than the quadratic function. Since its rate of change surpasses that of the quadratic function in the interval [tex]\( 0 < x < 3 \)[/tex], we conclude that the exponential function [tex]\( y = 4^x \)[/tex] grows at a faster rate than the given quadratic function in the specified interval.
First, let's calculate the rate of change of the quadratic function:
Given values for the quadratic function:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 0 \\ \hline 1 & 3 \\ \hline 2 & 12 \\ \hline 3 & 27 \\ \hline \end{array} \][/tex]
The rate of change over each interval [tex]\([x_i, x_{i+1}]\)[/tex] can be calculated using the formula:
[tex]\[ \text{Rate of change} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \][/tex]
For the interval [tex]\([0, 1]\)[/tex]:
[tex]\[ \text{Rate of change}_1 = \frac{3 - 0}{1 - 0} = 3.0 \][/tex]
For the interval [tex]\([1, 2]\)[/tex]:
[tex]\[ \text{Rate of change}_2 = \frac{12 - 3}{2 - 1} = 9.0 \][/tex]
For the interval [tex]\([2, 3]\)[/tex]:
[tex]\[ \text{Rate of change}_3 = \frac{27 - 12}{3 - 2} = 15.0 \][/tex]
So, the rates of change for the quadratic function are:
[tex]\[ [3.0, 9.0, 15.0] \][/tex]
Next, consider an exponential function of the general form [tex]\( y = a \cdot b^x \)[/tex]. For simplicity, let's analyze the exponential function [tex]\( y = 2^x \)[/tex].
Given values for the exponential function [tex]\( y = 2^x \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 1 \\ \hline 1 & 2 \\ \hline 2 & 4 \\ \hline 3 & 8 \\ \hline \end{array} \][/tex]
Again, we calculate the rate of change over each interval:
For the interval [tex]\([0, 1]\)[/tex]:
[tex]\[ \text{Rate of change}_1 = \frac{2 - 1}{1 - 0} = 1.0 \][/tex]
For the interval [tex]\([1, 2]\)[/tex]:
[tex]\[ \text{Rate of change}_2 = \frac{4 - 2}{2 - 1} = 2.0 \][/tex]
For the interval [tex]\([2, 3]\)[/tex]:
[tex]\[ \text{Rate of change}_3 = \frac{8 - 4}{3 - 2} = 4.0 \][/tex]
So, the rates of change for the exponential function [tex]\( y = 2^x \)[/tex] are:
[tex]\[ [1.0, 2.0, 4.0] \][/tex]
Comparing the rates of change:
- Quadratic function: [tex]\([3.0, 9.0, 15.0]\)[/tex]
- Exponential function [tex]\( y = 2^x \)[/tex]: [tex]\([1.0, 2.0, 4.0]\)[/tex]
Clearly, the quadratic function has higher rates of change within the interval [tex]\( 0 < x < 3 \)[/tex] compared to the exponential function [tex]\( y = 2^x \)[/tex].
To find an exponential function that grows faster, we need an exponential function where the rate of change exceeds 15.0 by [tex]\( x = 3 \)[/tex]. Let's consider a stronger exponential function [tex]\( y = 4^x \)[/tex]:
Given values for the exponential function [tex]\( y = 4^x \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 1 \\ \hline 1 & 4 \\ \hline 2 & 16 \\ \hline 3 & 64 \\ \hline \end{array} \][/tex]
Now, calculate the rate of change:
For the interval [tex]\([0, 1]\)[/tex]:
[tex]\[ \text{Rate of change}_1 = \frac{4 - 1}{1 - 0} = 3.0 \][/tex]
For the interval [tex]\([1, 2]\)[/tex]:
[tex]\[ \text{Rate of change}_2 = \frac{16 - 4}{2 - 1} = 12.0 \][/tex]
For the interval [tex]\([2, 3]\)[/tex]:
[tex]\[ \text{Rate of change}_3 = \frac{64 - 16}{3 - 2} = 48.0 \][/tex]
So, the rates of change for the exponential function [tex]\( y = 4^x \)[/tex] are:
[tex]\[ [3.0, 12.0, 48.0] \][/tex]
When we compare:
- Quadratic function: [tex]\([3.0, 9.0, 15.0]\)[/tex]
- Exponential function [tex]\( y = 4^x \)[/tex]: [tex]\([3.0, 12.0, 48.0]\)[/tex]
It is evident that the exponential function [tex]\( y = 4^x \)[/tex] eventually grows faster than the quadratic function. Since its rate of change surpasses that of the quadratic function in the interval [tex]\( 0 < x < 3 \)[/tex], we conclude that the exponential function [tex]\( y = 4^x \)[/tex] grows at a faster rate than the given quadratic function in the specified interval.
We are delighted to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.