Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
Let's solve the problem step-by-step:
1. Understanding the given data:
- The gravitational acceleration at the surface of the Earth ([tex]\( g_{\text{surface}} \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- The gravitational acceleration at some height above the Earth's surface ([tex]\( g_{\text{height}} \)[/tex]) is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
- The mass of the Earth ([tex]\( M \)[/tex]) is [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex].
- The radius of the Earth ([tex]\( R_{\text{earth}} \)[/tex]) is [tex]\( 6400 \, \text{km} \)[/tex], which is [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex].
2. Formulating the relationship using the gravitational formula:
The gravitational acceleration at a distance [tex]\( r \)[/tex] from the center of the Earth is given by the formula:
[tex]\[ g = \frac{G \cdot M}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant and [tex]\( M \)[/tex] is the mass of the Earth.
3. Setting up the ratio:
We can use the known gravitational acceleration at the surface and at height:
[tex]\[ g_{\text{surface}} = \frac{G \cdot M}{R_{\text{earth}}^2} \][/tex]
[tex]\[ g_{\text{height}} = \frac{G \cdot M}{r^2} \][/tex]
Taking the ratio of [tex]\( g_{\text{height}} \)[/tex] to [tex]\( g_{\text{surface}} \)[/tex]:
[tex]\[ \frac{g_{\text{height}}}{g_{\text{surface}}} = \frac{\frac{G \cdot M}{r^2}}{\frac{G \cdot M}{R_{\text{earth}}^2}} = \left( \frac{R_{\text{earth}}}{r} \right)^2 \][/tex]
Substitute the given values:
[tex]\[ \frac{2.5}{9.8} = \left( \frac{6400 \times 10^3}{r} \right)^2 \][/tex]
4. Solving for [tex]\( r \)[/tex]:
[tex]\[ \frac{2.5}{9.8} = \left( \frac{6400 \times 10^3}{r} \right)^2 \][/tex]
[tex]\[ \left( \frac{r}{6400 \times 10^3} \right)^2 = \frac{9.8}{2.5} \][/tex]
[tex]\[ r = 6400 \times 10^3 \times \sqrt{\frac{9.8}{2.5}} \][/tex]
From the calculations:
[tex]\[ r \approx 12671353.518862933 \, \text{meters} \][/tex]
5. Calculating the height above the Earth's surface:
The height above the Earth's surface is the total distance from the center of the Earth minus the Earth's radius:
[tex]\[ \text{height}_{\text{above surface}} = r - R_{\text{earth}} \][/tex]
[tex]\[ \text{height}_{\text{above surface}} = 12671353.518862933 \, \text{m} - 6400 \times 10^3 \, \text{m} \][/tex]
[tex]\[ \text{height}_{\text{above surface}} \approx 6271353.518862933 \, \text{meters} \][/tex]
Final Answer:
- The distance from the center of the Earth where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 12671353.518862933 \, \text{meters} \)[/tex].
- The height above the Earth's surface where the gravitational acceleration becomes [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 6271353.518862933 \, \text{meters} \)[/tex] or about [tex]\( 6271.353518862933 \, \text{km} \)[/tex].
1. Understanding the given data:
- The gravitational acceleration at the surface of the Earth ([tex]\( g_{\text{surface}} \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- The gravitational acceleration at some height above the Earth's surface ([tex]\( g_{\text{height}} \)[/tex]) is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
- The mass of the Earth ([tex]\( M \)[/tex]) is [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex].
- The radius of the Earth ([tex]\( R_{\text{earth}} \)[/tex]) is [tex]\( 6400 \, \text{km} \)[/tex], which is [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex].
2. Formulating the relationship using the gravitational formula:
The gravitational acceleration at a distance [tex]\( r \)[/tex] from the center of the Earth is given by the formula:
[tex]\[ g = \frac{G \cdot M}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant and [tex]\( M \)[/tex] is the mass of the Earth.
3. Setting up the ratio:
We can use the known gravitational acceleration at the surface and at height:
[tex]\[ g_{\text{surface}} = \frac{G \cdot M}{R_{\text{earth}}^2} \][/tex]
[tex]\[ g_{\text{height}} = \frac{G \cdot M}{r^2} \][/tex]
Taking the ratio of [tex]\( g_{\text{height}} \)[/tex] to [tex]\( g_{\text{surface}} \)[/tex]:
[tex]\[ \frac{g_{\text{height}}}{g_{\text{surface}}} = \frac{\frac{G \cdot M}{r^2}}{\frac{G \cdot M}{R_{\text{earth}}^2}} = \left( \frac{R_{\text{earth}}}{r} \right)^2 \][/tex]
Substitute the given values:
[tex]\[ \frac{2.5}{9.8} = \left( \frac{6400 \times 10^3}{r} \right)^2 \][/tex]
4. Solving for [tex]\( r \)[/tex]:
[tex]\[ \frac{2.5}{9.8} = \left( \frac{6400 \times 10^3}{r} \right)^2 \][/tex]
[tex]\[ \left( \frac{r}{6400 \times 10^3} \right)^2 = \frac{9.8}{2.5} \][/tex]
[tex]\[ r = 6400 \times 10^3 \times \sqrt{\frac{9.8}{2.5}} \][/tex]
From the calculations:
[tex]\[ r \approx 12671353.518862933 \, \text{meters} \][/tex]
5. Calculating the height above the Earth's surface:
The height above the Earth's surface is the total distance from the center of the Earth minus the Earth's radius:
[tex]\[ \text{height}_{\text{above surface}} = r - R_{\text{earth}} \][/tex]
[tex]\[ \text{height}_{\text{above surface}} = 12671353.518862933 \, \text{m} - 6400 \times 10^3 \, \text{m} \][/tex]
[tex]\[ \text{height}_{\text{above surface}} \approx 6271353.518862933 \, \text{meters} \][/tex]
Final Answer:
- The distance from the center of the Earth where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 12671353.518862933 \, \text{meters} \)[/tex].
- The height above the Earth's surface where the gravitational acceleration becomes [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 6271353.518862933 \, \text{meters} \)[/tex] or about [tex]\( 6271.353518862933 \, \text{km} \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.