Get personalized answers to your specific questions with IDNLearn.com. Our community provides timely and precise responses to help you understand and solve any issue you face.

If the value of gravity on the surface of the Earth is [tex]9.8 \, \text{m/s}^2[/tex], at what height from the surface does the value of gravity become [tex]2.5 \, \text{m/s}^2[/tex]?

[tex]\[
\begin{array}{l}
m = 6 \times 10^{24} \, \text{kg} \\
r = 6400 \, \text{km}
\end{array}
\][/tex]


Sagot :

Let's solve the problem step-by-step:

1. Understanding the given data:
- The gravitational acceleration at the surface of the Earth ([tex]\( g_{\text{surface}} \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
- The gravitational acceleration at some height above the Earth's surface ([tex]\( g_{\text{height}} \)[/tex]) is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex].
- The mass of the Earth ([tex]\( M \)[/tex]) is [tex]\( 6 \times 10^{24} \, \text{kg} \)[/tex].
- The radius of the Earth ([tex]\( R_{\text{earth}} \)[/tex]) is [tex]\( 6400 \, \text{km} \)[/tex], which is [tex]\( 6400 \times 10^3 \, \text{m} \)[/tex].

2. Formulating the relationship using the gravitational formula:
The gravitational acceleration at a distance [tex]\( r \)[/tex] from the center of the Earth is given by the formula:
[tex]\[ g = \frac{G \cdot M}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant and [tex]\( M \)[/tex] is the mass of the Earth.

3. Setting up the ratio:
We can use the known gravitational acceleration at the surface and at height:
[tex]\[ g_{\text{surface}} = \frac{G \cdot M}{R_{\text{earth}}^2} \][/tex]
[tex]\[ g_{\text{height}} = \frac{G \cdot M}{r^2} \][/tex]
Taking the ratio of [tex]\( g_{\text{height}} \)[/tex] to [tex]\( g_{\text{surface}} \)[/tex]:
[tex]\[ \frac{g_{\text{height}}}{g_{\text{surface}}} = \frac{\frac{G \cdot M}{r^2}}{\frac{G \cdot M}{R_{\text{earth}}^2}} = \left( \frac{R_{\text{earth}}}{r} \right)^2 \][/tex]
Substitute the given values:
[tex]\[ \frac{2.5}{9.8} = \left( \frac{6400 \times 10^3}{r} \right)^2 \][/tex]

4. Solving for [tex]\( r \)[/tex]:
[tex]\[ \frac{2.5}{9.8} = \left( \frac{6400 \times 10^3}{r} \right)^2 \][/tex]
[tex]\[ \left( \frac{r}{6400 \times 10^3} \right)^2 = \frac{9.8}{2.5} \][/tex]
[tex]\[ r = 6400 \times 10^3 \times \sqrt{\frac{9.8}{2.5}} \][/tex]
From the calculations:
[tex]\[ r \approx 12671353.518862933 \, \text{meters} \][/tex]

5. Calculating the height above the Earth's surface:
The height above the Earth's surface is the total distance from the center of the Earth minus the Earth's radius:
[tex]\[ \text{height}_{\text{above surface}} = r - R_{\text{earth}} \][/tex]
[tex]\[ \text{height}_{\text{above surface}} = 12671353.518862933 \, \text{m} - 6400 \times 10^3 \, \text{m} \][/tex]
[tex]\[ \text{height}_{\text{above surface}} \approx 6271353.518862933 \, \text{meters} \][/tex]

Final Answer:
- The distance from the center of the Earth where the gravitational acceleration is [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 12671353.518862933 \, \text{meters} \)[/tex].
- The height above the Earth's surface where the gravitational acceleration becomes [tex]\( 2.5 \, \text{m/s}^2 \)[/tex] is approximately [tex]\( 6271353.518862933 \, \text{meters} \)[/tex] or about [tex]\( 6271.353518862933 \, \text{km} \)[/tex].