Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
To address this problem, we need to find the composite function [tex]\( N(T(t)) \)[/tex] and determine at what time [tex]\( t \)[/tex] the bacteria count [tex]\( N(T(t)) \)[/tex] reaches 24130.
### Step 1: Substitute [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]
We start with the given functions:
[tex]\[ N(T) = 26T^2 - 94T + 45 \][/tex]
[tex]\[ T(t) = 9t + 1.5 \][/tex]
We need to find the composite function [tex]\( N(T(t)) \)[/tex] by substituting [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(9t + 1.5) \][/tex]
### Step 2: Compute [tex]\( N(9t + 1.5) \)[/tex]
Substitute [tex]\( T = 9t + 1.5 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(9t + 1.5)^2 - 94(9t + 1.5) + 45 \][/tex]
We need to expand and simplify this expression:
[tex]\[ (9t + 1.5)^2 = (9t)^2 + 2(9t)(1.5) + (1.5)^2 \][/tex]
[tex]\[ = 81t^2 + 27t + 2.25 \][/tex]
Now substitute this back into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(81t^2 + 27t + 2.25) - 94(9t + 1.5) + 45 \][/tex]
[tex]\[ = 26 \cdot 81t^2 + 26 \cdot 27t + 26 \cdot 2.25 - 94 \cdot 9t - 94 \cdot 1.5 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t + 58.5 - 846t - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t - 846t + 58.5 - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 - 144t - 37.5 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 2106t^2 - 144t - 37.5 \][/tex]
### Step 3: Find the time [tex]\( t \)[/tex] when the bacteria count reaches 24130
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 24130 \)[/tex]:
[tex]\[ 2106t^2 - 144t - 37.5 = 24130 \][/tex]
Rearrange the equation:
[tex]\[ 2106t^2 - 144t - 37.5 - 24130 = 0 \][/tex]
[tex]\[ 2106t^2 - 144t - 24167.5 = 0 \][/tex]
### Step 4: Solve the quadratic equation
We apply the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 2106 \)[/tex], [tex]\( b = -144 \)[/tex], and [tex]\( c = -24167.5 \)[/tex]:
[tex]\[ t = \frac{-(-144) \pm \sqrt{(-144)^2 - 4(2106)(-24167.5)}}{2(2106)} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{20736 + 203330940}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{203351676}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm 14257.522}{4212} \][/tex]
We get two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{144 + 14257.522}{4212} \approx 3.421918 \][/tex]
[tex]\[ t = \frac{144 - 14257.522}{4212} \approx -3.401 \][/tex]
Since the time must be positive, the valid solution is:
[tex]\[ t \approx 3.421918 \][/tex]
Therefore, the time needed for the bacteria count to reach 24130 is approximately:
[tex]\[ \boxed{3.421918} \][/tex] hours.
### Step 1: Substitute [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]
We start with the given functions:
[tex]\[ N(T) = 26T^2 - 94T + 45 \][/tex]
[tex]\[ T(t) = 9t + 1.5 \][/tex]
We need to find the composite function [tex]\( N(T(t)) \)[/tex] by substituting [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(9t + 1.5) \][/tex]
### Step 2: Compute [tex]\( N(9t + 1.5) \)[/tex]
Substitute [tex]\( T = 9t + 1.5 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(9t + 1.5)^2 - 94(9t + 1.5) + 45 \][/tex]
We need to expand and simplify this expression:
[tex]\[ (9t + 1.5)^2 = (9t)^2 + 2(9t)(1.5) + (1.5)^2 \][/tex]
[tex]\[ = 81t^2 + 27t + 2.25 \][/tex]
Now substitute this back into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(81t^2 + 27t + 2.25) - 94(9t + 1.5) + 45 \][/tex]
[tex]\[ = 26 \cdot 81t^2 + 26 \cdot 27t + 26 \cdot 2.25 - 94 \cdot 9t - 94 \cdot 1.5 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t + 58.5 - 846t - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t - 846t + 58.5 - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 - 144t - 37.5 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 2106t^2 - 144t - 37.5 \][/tex]
### Step 3: Find the time [tex]\( t \)[/tex] when the bacteria count reaches 24130
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 24130 \)[/tex]:
[tex]\[ 2106t^2 - 144t - 37.5 = 24130 \][/tex]
Rearrange the equation:
[tex]\[ 2106t^2 - 144t - 37.5 - 24130 = 0 \][/tex]
[tex]\[ 2106t^2 - 144t - 24167.5 = 0 \][/tex]
### Step 4: Solve the quadratic equation
We apply the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 2106 \)[/tex], [tex]\( b = -144 \)[/tex], and [tex]\( c = -24167.5 \)[/tex]:
[tex]\[ t = \frac{-(-144) \pm \sqrt{(-144)^2 - 4(2106)(-24167.5)}}{2(2106)} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{20736 + 203330940}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{203351676}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm 14257.522}{4212} \][/tex]
We get two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{144 + 14257.522}{4212} \approx 3.421918 \][/tex]
[tex]\[ t = \frac{144 - 14257.522}{4212} \approx -3.401 \][/tex]
Since the time must be positive, the valid solution is:
[tex]\[ t \approx 3.421918 \][/tex]
Therefore, the time needed for the bacteria count to reach 24130 is approximately:
[tex]\[ \boxed{3.421918} \][/tex] hours.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.