Find answers to your questions and expand your knowledge with IDNLearn.com. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
To address this problem, we need to find the composite function [tex]\( N(T(t)) \)[/tex] and determine at what time [tex]\( t \)[/tex] the bacteria count [tex]\( N(T(t)) \)[/tex] reaches 24130.
### Step 1: Substitute [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]
We start with the given functions:
[tex]\[ N(T) = 26T^2 - 94T + 45 \][/tex]
[tex]\[ T(t) = 9t + 1.5 \][/tex]
We need to find the composite function [tex]\( N(T(t)) \)[/tex] by substituting [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(9t + 1.5) \][/tex]
### Step 2: Compute [tex]\( N(9t + 1.5) \)[/tex]
Substitute [tex]\( T = 9t + 1.5 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(9t + 1.5)^2 - 94(9t + 1.5) + 45 \][/tex]
We need to expand and simplify this expression:
[tex]\[ (9t + 1.5)^2 = (9t)^2 + 2(9t)(1.5) + (1.5)^2 \][/tex]
[tex]\[ = 81t^2 + 27t + 2.25 \][/tex]
Now substitute this back into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(81t^2 + 27t + 2.25) - 94(9t + 1.5) + 45 \][/tex]
[tex]\[ = 26 \cdot 81t^2 + 26 \cdot 27t + 26 \cdot 2.25 - 94 \cdot 9t - 94 \cdot 1.5 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t + 58.5 - 846t - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t - 846t + 58.5 - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 - 144t - 37.5 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 2106t^2 - 144t - 37.5 \][/tex]
### Step 3: Find the time [tex]\( t \)[/tex] when the bacteria count reaches 24130
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 24130 \)[/tex]:
[tex]\[ 2106t^2 - 144t - 37.5 = 24130 \][/tex]
Rearrange the equation:
[tex]\[ 2106t^2 - 144t - 37.5 - 24130 = 0 \][/tex]
[tex]\[ 2106t^2 - 144t - 24167.5 = 0 \][/tex]
### Step 4: Solve the quadratic equation
We apply the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 2106 \)[/tex], [tex]\( b = -144 \)[/tex], and [tex]\( c = -24167.5 \)[/tex]:
[tex]\[ t = \frac{-(-144) \pm \sqrt{(-144)^2 - 4(2106)(-24167.5)}}{2(2106)} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{20736 + 203330940}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{203351676}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm 14257.522}{4212} \][/tex]
We get two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{144 + 14257.522}{4212} \approx 3.421918 \][/tex]
[tex]\[ t = \frac{144 - 14257.522}{4212} \approx -3.401 \][/tex]
Since the time must be positive, the valid solution is:
[tex]\[ t \approx 3.421918 \][/tex]
Therefore, the time needed for the bacteria count to reach 24130 is approximately:
[tex]\[ \boxed{3.421918} \][/tex] hours.
### Step 1: Substitute [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]
We start with the given functions:
[tex]\[ N(T) = 26T^2 - 94T + 45 \][/tex]
[tex]\[ T(t) = 9t + 1.5 \][/tex]
We need to find the composite function [tex]\( N(T(t)) \)[/tex] by substituting [tex]\( T(t) \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(T(t)) = N(9t + 1.5) \][/tex]
### Step 2: Compute [tex]\( N(9t + 1.5) \)[/tex]
Substitute [tex]\( T = 9t + 1.5 \)[/tex] into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(9t + 1.5)^2 - 94(9t + 1.5) + 45 \][/tex]
We need to expand and simplify this expression:
[tex]\[ (9t + 1.5)^2 = (9t)^2 + 2(9t)(1.5) + (1.5)^2 \][/tex]
[tex]\[ = 81t^2 + 27t + 2.25 \][/tex]
Now substitute this back into [tex]\( N(T) \)[/tex]:
[tex]\[ N(9t + 1.5) = 26(81t^2 + 27t + 2.25) - 94(9t + 1.5) + 45 \][/tex]
[tex]\[ = 26 \cdot 81t^2 + 26 \cdot 27t + 26 \cdot 2.25 - 94 \cdot 9t - 94 \cdot 1.5 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t + 58.5 - 846t - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 + 702t - 846t + 58.5 - 141 + 45 \][/tex]
[tex]\[ = 2106t^2 - 144t - 37.5 \][/tex]
Thus, the composite function is:
[tex]\[ N(T(t)) = 2106t^2 - 144t - 37.5 \][/tex]
### Step 3: Find the time [tex]\( t \)[/tex] when the bacteria count reaches 24130
We need to solve for [tex]\( t \)[/tex] when [tex]\( N(T(t)) = 24130 \)[/tex]:
[tex]\[ 2106t^2 - 144t - 37.5 = 24130 \][/tex]
Rearrange the equation:
[tex]\[ 2106t^2 - 144t - 37.5 - 24130 = 0 \][/tex]
[tex]\[ 2106t^2 - 144t - 24167.5 = 0 \][/tex]
### Step 4: Solve the quadratic equation
We apply the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 2106 \)[/tex], [tex]\( b = -144 \)[/tex], and [tex]\( c = -24167.5 \)[/tex]:
[tex]\[ t = \frac{-(-144) \pm \sqrt{(-144)^2 - 4(2106)(-24167.5)}}{2(2106)} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{20736 + 203330940}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm \sqrt{203351676}}{4212} \][/tex]
[tex]\[ t = \frac{144 \pm 14257.522}{4212} \][/tex]
We get two potential solutions for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{144 + 14257.522}{4212} \approx 3.421918 \][/tex]
[tex]\[ t = \frac{144 - 14257.522}{4212} \approx -3.401 \][/tex]
Since the time must be positive, the valid solution is:
[tex]\[ t \approx 3.421918 \][/tex]
Therefore, the time needed for the bacteria count to reach 24130 is approximately:
[tex]\[ \boxed{3.421918} \][/tex] hours.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.